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ABSTRACT
ii

A unified procedure is employed in the determination of the penetration resistance of
continuous strip footings and foundations buried up to ten times their width in compact snil.
The quasi-static analysis is based on the soil failure theory of classical soil mechanics.

The theoretical data is presented by means of a two part additive equation, two
dimensionless factors describin,-g the effect (if weight and cohesion. These factors are
functions not only of the angle of internal friction and the penetration ratio but also of the
shaft parameters and the dimensionless group dependent on the density, the cohesion and the
breadth of the footing. The factors are calculated for the same figure of rupture and the
pracice of treating a portion of weight within the failure boundary as a surcharge has been
eliminated. The inherent approximations and resultant errors in the computation are fully
stated.

Experimental verification is given both of the penetration resistance and of the
failure geometry by model testing in a glass sided soil tank. The penetration resistance data
in compact soil support the quantitative theonutical values. The measured failure patterns are
shown to be in agreement with the predicted shapes only when the effect of changing soil
properties and constraints are carefully evaluated throughout the duration of the test.
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NOTATION

a eExponential function dimnensionlessI

Al -Ag Functionsvaiu

B Breadth of footing in

C Cohesion l b in-

c aAdhesion l b in '

CAdhesive force on the shaft lb in -1I

C 1,C 2 ,C3  Cohesive forces lb, in-1

dctdq~dy~ Empirical depth factors dimrensionlessj

d, di -dii Dimensions i

e Base of natural logarithm dimensionless

f Rupture distance in

fl, 1 2 Functions 'dimecnsionless

F To'..i force lb) in~

FcResultant cohesive-frictional force lb in'

F). Resultant weight-frictional force lb) in

F rzI FC2  Cohesive-frictional boundary forces lb in

F 1 -2Weight-frictional boundary force lb i r

Fcs Cohesive-frictional force on the shaft lb in 4/91

FYSWeight-frictional force on the shaft lb in 1

9Acceleration due to gravity in sec -

HcCritical height of vertical bank in

iciqliy Empirical inclination f.Iors dimensionless

k Sinkage modulus dimensionlessI
Radius of gyration inj

kcCohesive sinkage modulus lb in 1-n
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k Frict jona, I irI'kage' MOduluIIs lb in -2-n

'c Coesv sinkage modulus dimensionless

k., riction-A SinkIige mIodUIlIs dimensiouless

k cs Shaft coefftc i-nt of vath pressure due to dimensionless
coeajon at fri ct jot

k ys tMalt ffiee til of catrth pt-ussure due to ditmensijonless

wecight antd friction

k a Sha ft couffiric ti of active earth pressurte dimensionless

k Shift coefficient of passive earth pressure dimensionless

k Ot( B3ound arY COO ffic un t Of catli pressure dICc to dinie ns ion less
oCsthes ionI and friction01

kyBoundary coefficient of earth pressure duie to dimensionless
weight anad fric tion

1 Characteristic length in

L DilrensiOti in
Lcetgth of footing i

m Mobtisatiott of shtear stress on equivalent dimensionless
free surface

NMC Mollenit of COllesi n lb in -

.3
M~M ~ Motments of area in

n Sinkage exponent di men sionies s
Bouundary exponenit dimensionless

NC, NqN N, Gerier-ai fa-ctors- for cohesion, surcharge dime nsi on less
N weigtlt and adhtesion

a l3eairing capacity factors dimensionless

Ncq, N yq Composite bcuaring capacity factors dimeiisionless

Nq co Suircharge factor for a weighttless sodl dimensionless

NYO eiplit fac~tor for zero surchtarge dimensionless
Weight factor for zero interface iriction dimensionless

N Y&, Y$ Weight factors for internediate and maximtum dimensionless
interface friction

N a' r' Weight factors for various shaft coefficients dimensionless
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r Radius in
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sc,Sq.Sy Empirical shape factors dimensionless

u Constant dimensionless

v Velocity of penetration in sec -1

Constant dimensionless

VJ-V8 Functions various

W, WI Weight forces lb in -

Xo Centroid distance in

z,z o , zt-Z 3  Sinkage in

a Angle of average inclination of the major degree
plane

y Soil density lb in -

Angle of interface friction degree
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1. INTRODUCTION

The evaluation of the stress deformation characteristics of soil not only forms the
basis of foundation engineering but also represent one of the major problems hindering progress
in soil-vehicle relationships. In the past, this common interest in one and the same problem
has not generated viable co-operation between the two fields. In fact, rather the reverse is
true, partly due to the divergence in practical requirements.

For the design of foundations, comolete soil failure at its ultimate bearing capacity

must be avoided with an adequate margin of safety, and the total and relative settlements must

be less than the limits tolerated by the superstructure. The point of complete failure is

determined by the maximum stress in soil, whereas the settlement is due to soil consolidation

under the weight of the structure, and depends on smaller stresses which can be described by

elastic analysis. Thus, bearing capacity theories are based on mathematical analyses for

ideal soils, and minor deviations from realistic conditions are adequately safeguarded by the

adoption of a factor of safety of three.

In mobility investigations, the theories of penetration resistance must be more precise

for application in the more complex theories of motion resistance, slip sinkage and the

ultimate imrobilisation of the vehicle. Greater emphasis has been placed on empirical rela-

tions and similarity techniques to overcome the problems of describing accurately the

influence of stress strain characteristics, compressibility and layered conditions in the

disturbed top soil. Although it is doubtful whether these factors will ever be predicted

accurately in a rigorous analysis, any empirical analysis must be firmly based on sc''

mechanics theory. The solution must be capable of modification and extension to include the
influence of combined loading and vehicle attitude on the mode of failure and the load bearing
of the soil.

1.1 Analytical Techniques

The diverse approaches emplo.ved to determine the stess deformation characteristics
of the soil may lie divided into the following five categories:-

(1) Static analysis, a rigorous mathematical analysis based on ,he stress
conditions at failure in a rigid heavy Coulomb material.

(2) Plasticity theory, the association of static analysis wth suitable stress strain
relationships.

(3) Soil mechanics theory, an approach based on 1 or 2 above, but involving

simplifying assumptions in order to obtain reasonably economical solutions to real

problems.

(4) A semi-empirical analysis employing measured soil stress deformation
characteristics.

.(5) Model experiments guided by dimensional analysis.

The main difficulty with the various types of rigorous analysis-for example static analysis,
plasticity theory and limit analysis-is that they are not relevant to real soils. In order to



obtain immediate solutions to practical problems, soil mechanics theory has incorporated much
of this more fundamental work without fully defining all the asumptions and approximations.
The result is that particular problems have numerous solutions which have little point of
contact with each other. Both rigorous and theoretical analysis are combined with empiricism
and dimensional theory to yield a wealth of possibilities. The potential and limitations of
these evaluation techniques are illustrated in this review of previous work.

1.2 Static Analysis

A
Perhaps the most relevant approach to soil mechanics is through the method of static

analysis, particularly associated with the work of Sokolovski 1 . It is based on the properties
of a rigid Coulomb material and combines the known relationships between the stresses at
failure with the partial differential equations of equilibrium.

The simplest way of describing stress conditions at failure is by the Coulomb
equation2 ,

= c + a tan0 ..... 1.2.1.

where r represents the maximum shear stress along any plane of incipient failure, c the
cohesion, a the normal stress on the plane and 0 the angle of internal shearing resistance.
A more general version of this yield condition showing the relation between the normal and
shear stresses on any two mutually perpendicular planes at a point of incipient failure is:-

a~a ++7] Vy sin 0 + ]cco + aCs 0
2 L4 y.... 1.2.2.

The equations of static equilibrium are':-

U + 8 -xy = 0
8x By

8 rXY + 8 y 1.2.3.

8x By 0

The total distribution of stress throughout a mass of failing soil can be obtained by
integration of these equations starting from known boundary stresses. This can be done by a
step by step numerical method using more convenient versions of equations 1.2.2. and 1.2.3.
Sokolovski has published an account of the applications of this method to many rather simple
problems. Prager 3 developed an alternative graphical technique called the Pole Trail method
which was used by Josselin de Jong 4 to obtain the bearing capacity of a surface footing on
a frictional material with weight and surcharge.

The most fundamental proposition that emerges from this analysis is that slip planes
occur in pairs Inclined at an angle of ,,12 + 0 to each other at all points in a mass of soil at
failure. This can be seen immediately from the Mohr diagram in Fig 1.2.1.

2



i
In general, the slip line field will consist of two sets of curved lines intersecting at

the correct angle of Pr/2 + ,. Where a discontinuity occurs in the boundary stress conditions
(as at the corner of a footing) two different slip line fields mcet t ach other. In order to obtain
a continuous slip line field, a third fan shaped zone is introduced with one set of slip lines
emanating from the point of discontiuity or singular point (ig 1.2..)

When a uniform loading is applied parallel or at right angles to the gravitional force,
the c urved slip lines are stra gh},tiei to form stress fiflds in the well known acti ye and
passive Rankine states, espectivelv. In addition, if a singular point occurs between two

straight slip line fiels, then all the lines emaniating from th,, point are straight radii, and the
other family are inclined at at angle 0 to the circumferential direction to satisfy the condition
of e-uilib1rium so that the sip lines are at an angle of : /2 + f3. The increment of length of
the curved slip line is:-

r d F. sec0 dr cosec 1.2.4.

and aft,-.r integration

r, r e C tan
r0 = ro ae .... 1.2.5.

where r, is the radius for " 0 (1-ig 1.2.3.). 'lius tie circilar failure plane is replaced bjy
a logarithmic spiral when friction is present in the radial fan.

Static analysis can only be applied to problems where the soil mass at a staite (.f
faiiure is completely isola'd )y Lounidaries of know.n stresses and known failure surfaces
with in the soil, [Examl-1es are the surface foundation and reta inin,- w-all profLiems illustrated
in 1.. 4 a. and 1. 'Akh.Note that, in these cascs;, ai l.e soil .ithin the boundaris"
A3CDL and AlBCDEFGII is definitely failed.

Lnfortunatel' , teeniques cannot vield a complete solution to the deep foundation
problem: sho n i F, ir i,..-. lh is Icause a large part of the zone liiI -G conssits of soil
which is defintei':' no, in a sstc of failure. It is possitde to obtain the zone \B static
analysis and to see thai t there must be a fan w itii initially straigiht radii emanating from B. The
other limits of the fan I (J1) ,ould n-ormally he obtained from the slip line field in the region

13I)Il; by integration i .,rs fro".m .-rc,.ov n i.-eundar'.' stresses alQng B and G. This cannot be
done because the soil is not in a state of failure along these boundaries.

A rigorous -,olution -o thisc proble, % %ould ,eq~ire a knowledge of the stress strainrelation for the soil extending over tIe ah:ole elastic plastic range. This would provide a

separate set of kincmatic constraints from which extra equations could be established. Such a
system of static and kinematic requirements constitutes a theory of plasticity.

1.3. Theories (,f Plasticitv

The combination of static requirements b-.sed on force equilibrium and a failure
criterion, and kineatic requirements based on stress strain relations is the basic feature of
an,' plastic theory. The most successful solutions have been developed for incompressblk,
frictionless materials failing according to the Tresca criterion:-

max 1.3.1.
Smax •..

3I



Normally (e.g. for metals) I( is far greater than the gravitional stresses which may then be
neglected, resulting in the assumption of a weightless materiwl. The way in which stress
strain relation can be described in a plastic material is highly complex. Let it suffice to say
that it is derived from the concept of a yield function which, for a stable material, requires
that the strain rate vector is always normal to the yield surface when axes of plastic strain
are superimposed on the axes of stress in Mohr's circle construction. The ratio of plastic
extension to plastic shear rate is uniquely determined by the shape of the yield surface.

This theory of plasticity has been used with limited success for certain simple
problems concerning the working of metals or of relatively strong clays. When more complex
boundary conditions are introduced, the complicated mathematical expressions for the
curvature of the slip lines are not always capable of yielding a general solution.

Even in a perfectly plastic weightless material with 0 = 0, few problems have been
solved. Prandtl s achieved an exact solution for the identation of a flat surface by a long flat
punch (Fig 1.3 .a.). The regions ABC and 3DE a re regions of constant stress whilst BCD
is a zone of radial shear. lowever, Hill 6 .proposed an alternative stress distribution for the
same problem which gives the same bearing capacity (Fig 1.3.1b.). The velocity fields for
the two solutions were added by Shield 7. In Prandtl's solution, the rupture distance 13E is
twice that in Hili's solution, but the velocities are halved so that the volume of material
raised above !he undisturbed surface after the punch has penetrated a small distance is the
same in both cases. It has been proposed that the double wedge is applicable to a smooth
base and the single wedge to a rough base when friction is present. This distinction is later
used in soil mechanics.

Considering the penetration of the load into an ideally plastic material, the surface
bearing capacity is not the maximum base penetration resistance, and it increases with depth
to some steady value. At this ultimate bearing state, Jaky8 has postulated the slip line
field for the case of plain strain (Fig 1.3.2.). In the zone of radial' shear BCD, the slip lines
turn through an angle of 'r radians instead of 7T/2 radians in Prandtl's solution. The two
regions of constant stress ABC and BDE remain intact, but the rupture surface CDE breaks
out at the vertical free surface as opposed to the horizontal free surface in the surface case.

In view of the difficulty of obtaining a precise solution, an approximate method known
as limit analysis has been developed within this theory of plasticity. The collapse or limit
design theorems were first introduced by Drucker and Prager 9 and refer to the constant loads
if the accompanying changes in geometry are disregarded. In other words, the equilibrium
conditions may be set up in the undeformed body and represent a greatsimplification because
the deformation constitutes one of the unknowns in the collapse problem.

The two theorems are':-

(a) Collapse will not occur if any state of stress can be found which satisfies the
equations of equilibrium and stress boundary conditions.

(b) . Collapse must occur if, for any compatible flow pattern considered as plastic
only, the rate at which the external forces do work on the body equals or exceeds the
rate of internal dissipation.
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Based on the first theorem, a perfectly plastic material will adjust itself to carry the
load if there is a possible way. This statically admissible state of stress gives a lower
bound solution for the equilibrium stress conditions at every point of a plastic zone. From the
second theorem, the soil will fail if a path of failure exists. This kinematically admissable
velocity field gives an upper bound solution which is only valid for perfectly elastic materials.
Thus a lower bound solution is maximised whilst an upper bound solution is minimised. The
actual solution lies at the point where these two approaches have the same value for the
applied force. The use of these theorems is tedious andthere is no guarantee that the upper
and lower bound solution will converge accurately on the same mean value.

Attempts have been made to develop a theory of plasticity for a material with weight
and internal friction, which would be appropriate to real soils. The Tresca yield criterion has;
been replaced by the Von Mises - Coulomb criterion and the material assumed to be non-worP
hardening. This activity is well represented by the recent work of Drucker I0 ,
llaythornthwaite"l and Shield 1 2. This attempt has failed, however; the resulting material has
the property of enormous dilation with shearing strain and is, therefore, quite unlike soil' 3 .
One negative outcome of the work is the realization that the limit analysis theorems need
extensive modification before they can be applied to frictional materials 14,

Frequent reference to the theory of plasticity is made in published work in soil
mechanics. Terzaghi's work is on bearing capacity is based on Prandtl's solution and
Meyerhof's 1 6 on Jaky's. In the particular case of strong frictionless clays, there is some
justification for this, due allowance being made for the controversial nature of the plasticity
solutions themselves. However, the minimisation procedure which are often used in soil
mechanics and justified by vague references to limit analysis do not appear to be correct.

1.4 Shallow Foundation Theory

Soil mechanics commenced as a serious theoretical study with the publication of
'Theoretical Soil Mechanics' by Terzaghi in 194315. The basis for the theories, developcd
therein, is clearly the theory of plasticity for frictionless weightless materials. Modifications
to suit heavy frictional soils have been attempted by numerous workers, each applying
different assumptions and simplifications. No major effort is made to explain why rigorous
solutions of real problems are not possible, nor to develop suitable principles for non-rigorous
methods. This unsatisfactory position in current soil mechanics can best be appreciated by a
critical examination of the existing theories of bearing capacity.

The failure geometry assumed by Terzaghi for a surface foundation is shown in
Fig 1.4.1a. From the conditions of stress beneath the base of the footing, he postulated the
existence of a wedge shaped body of soil ABC, which remains permanently in a state of
elastic equilibrium and behaves as part of the sinking footing. Furthermore, the shape of th,'!
wedge has dependent on the base roughness such that the base angle 'b could take any vahwe
between -,i/4 + 0 /2 for a perfectly smooth base and 0 for a rough base. The latter value was
adopted for two reasons, first because he found that the angle of base friction was always less
than the angle of shearing resistance, and secondly because he assumed that the footing could
sink only if the soil immediately below the wedge tip C moved vertically downwards. For this
condition, the stress trajectories must emanate from a vertical tangent. This gives rise to an
impossible stress condition at point C, where four failure planes intersect in a Coulomb
material at angles of other than the correct values of rT/2 + V/ and 7/2 - 0 radians.
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This analysis was based on plasticity theory. The failure patterns which result from the three
combinations of weight and surcharge are shown in Fig 1.4.2. The upper diagram illustrates
the traditional Prandtl failure pattern for a weightless soil with surcharge. The inclusion of
soil weight in the analysis results in a curved wedge boundary and a doubly curved slip line
field in the fan. When both weight and surcharge are considered, the failure surface is unique
and it has been postulated that the ultimate bearing pressure in a cohesionless soil can be
expressed more correctly by the formula:-

p - i (qNqw + Y2YBNY o ) 1.4.2.

where Nq. is the surcharge factor for a weightless soil, Nyo is the weight factor for zerosurcharge and t is a function of 0 and the surcharge to weight ratio. For 0 300 the
correcting factor ,i is given in Fig 1.4.3. As its maximum value is only 1.17, the error made
when neglecting y is thus not excessive.

It is also interesting to note that the value of 'u remains pcsitive for quite large
surcharges. In Terzaghi's theory where shallow sinkage is considered in ternis of a surcharge
soil layer, the maximum value of the correcting factor when 0 30° occurs for a penetration
ratio of 0.4 and the correcting factor is greater than zero provided the penetration ratio is less
than ten. This lends proof to Terzaghi's original argument that by neglecting the shear
strength of the overburden and discarding a correcting factor, the computation is simplified
and any error is located on the safe side. Unfortunately, Lundgren's value of N-yo corresponds
to r solution which is statically correct but kinematically i. s'-ible and is now thought to be
over conservative.

An alternative solution was developed by Gorbunov-Passadovi 9 who based his
analysis on the assumption that the velocities in tl:e plastic zones have the same direction
as the active slip surfaces. Although this assumption is open to criticism, he did provide
some experimental substantiation from a photographic analysis of the particle paths at failure.
From his calculations, there results a two part wedge (Fig 1.4.4.). The iiner elastic zone
A13C is almost the same shape as that found by lundgren. F-roim the outer boundary of thw,
compacted core Abl), the slip lines curve to make vertical contact with the boundary of tle
inner elastic core. ;\ith this type of failure mechanism, the value of Ny is much largr than
those given by the classical method (F'ig 2.10.1.). It is, howeve, a val able attctpt t ii na
a statically corr,,ct solution based on the kinen-,atic evidence oLtaiiled foi, i t ddtu.

The two preceding theories 1", 19 suffer from this disadvantage that cohesion is not
considered. A less vigorous but more general analysis has been proposed by llu 20 in his
'Variable Factor-Theory'. 'Ihe slip surface comprises a logarithmic spiral with ;ts pole
constrained at the corner of the footing and a straight sided wedge under the foundation whose
variable base angle 45 is determined by the condition for which the ultimate bearing capacity
is a minimum (Fig 1.4.5.). Hence, the minimum value postulate depending on the position of
the spiral pole is replaced by one depending on the base angle of the wedge using the same
moment equation as the basis of the analysis. It therefore suffers from the same criticism as
Terzaghi's small wedge, namely, that the failure planes at the wedge tip do not meet and the
correct angles in alZoulomb material. It will later be shown that the minimum value postulate
wholly depends on the mathematical constraints of the problem when disociated from the
correct stress conditions and not on the mechanism of failure (c.". Section 5).

Howe's solution l combines the procedure of slices as descril,d by 3ishop 22 and
Janbu2  with the stress dilatancy relations. In the failure gCometry, th, 'lip line is r'plaiced
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by the a -line where a is the average inclination of the major plane at which the particles are
interlocked (Fig 1.4.6.). The angle of rotation of the principle stresses when measured from
the vertical is denoted by "a in the figure and when measured from the horizontal by 06. This
analysis has several advantages. The stress boundaries are nowhere violated, the ana lysis can
be simplified by approximate methods without involving errors of practical importance, and the
solutions are identical with those based on the Mohr-Coulomb criterion when the dilatancy is
zero.

The solution seems to provide a suitable compromise or correlation between the two

.conflicting groups adopting the straight and curved wedge boundaries.

1.5 'Deep Foundation Theory

Terzaghi applied the term 'deep foundation' to one whose sinkage is greater than the
width. The first comprehensive study was conducted by Meyerhof 1 6. lie extended Terzaghi's
bearing capacity theory to deal with deep foundations, and made a major contriLution in that
the failure geometry was not only dependent on 0 but also on the sinkage. A failure pattern
was proposed with a smooth transition from the surface case to that of a deep foundation
(Fig 1.5.1.). The zone of mobilised soil is again divided into three regions - the wedge, the
plane shear zone and the zone of radial shear. As sinkage increases the segment if the spiral
is extended, and the plane shear zone is reduced in size.

Mfeyerhof assumed that the wedge angle must always have a base angle of r/4 +
0/2 regardless of the roughness of the footing, but in accordance with placticity theory, stated
that beneath a perfectly smooth base, two wedges were formed instead of one which effi ecvely
halves the total bearing capacity (c.f. Figs 1.3 .1a. and 1.3.1b.). In practice, however, a smooth
base is never found, and may be discounted.

For the determination of the failure geometry and the calculation of the bearing capacity
factors, Meyerhof was obliged to assume a certain pressure distribution along BC, EL) and DB
(Fig 1.5.1a.). Along the wedge boundary BC, he assumed that the weight-frictional component
of pressure would always have its centre of pressure two thirds of the way from B to C. From
the analogy of hydrostatic pressure, this would be correct for a surface foundation, but as the
sinkage increased, the centre of pressura would move towards the centre of BC.'

The resultant forces acting on the foundation shaft BG, and the weight of the adjacent
soil wedge BEG are replaced by 'equivalent stresses' normal and tangential to the plane BE,
which may then be treated as an 'equivalent free surface'. It is not stated however that these
stresses are uniformly distributed along BE, nor is it made clear that the pressure due to both
cohesion and weight are equally dL. buted on all sides of the triangle BDE. The startling
assumption comes from using Mohr's circle to determine the equilibrium of the triangle BDE
upon which the geometry depends. The Mohr circle, however, is a construction that is correct
for the stresses at a point where uniform distribution of stress is a reasonable assumption.

The bearing pressure was represented by the equation:-

p = cNc + PoNq + Y3N. 1.5.1.

where Po is the normal equivalent free surface stress along BE. The calculation of the
cohesion and surcharge factors is again based on an extension of Prandtl' s work in a weight-
less material, and the pole of the radial shear zone lies at the corner of the footing, For the
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calculation of the weight factor, Meyerhof minimised with even greater abandonment than
Terzaghi and has attempted to justify this in published work 24 on surface foundatisas. Even
further discontinuities are introduced by the complete relaxation of the restraints on the
spiral centre (Fig 1.5.1.). Unfortunately the unrestrained pole necessitates discontinuous
slip planes along the L indaries of the wedge BC, and the passive Ranking zone, 131). It is
also u jacceptable orn the grounds that the failure surface CE has a sharp corner in it at
point U which is unlikely where soil movement is occurring. Unless these discrepancies are
small, the.re remains little support for describing the shape of the curve by tie equation of the
logarithmic spiral, apart from the advantage that of the frictional forces pass through the pole.
Compared with Terzaghi's N7 factor for the same wedge angle of ,/4 + 0/2 he did obtain
values of up to 10/ lower at the larger values of 0, but only by sacrificing the more accept-
able stress field. With the inclusion of the sinkage parameter, the freedom of movement of
the pole is much more considerable and impossible stress field can be derived. In the presence
of the surcharge, zone BEG is also neglected so that the geometry reduces to that of a footing
on a slope. Meyerhof also shows that there is little difference in the value of N y if the plane
shear zone is replaced by an extension of the radial shear zone, but rotational equilibrium of
the forces was not examined in either case. It is hardly surprising, therefore, that the failure
geometry for the N -/ calculation is much smaller than that for the weightless material; when
the plane shear zone is absent, the former may be half the other.

In the generalisation procedure, Meyerhof confuses the concept of a surcharge with
that of a force due to soil weight and cohesion. lie considers triangle BEG as a surcharge.
There seems no justification for this and it is perfectly possible to include the effect of this
triangle in the weight term. This leaves open the possibility of considering any surcharge
applied to the surface EG.

In fact, Mleyerhof did attempt to express the resultant bearing capacity by the equttion:-

P = CNcq + 2 BN 1.5.2.

where one term represents the influence of cohesion and the other the influence of weighi.
The factors Ncq (depending on Nc and Nq) and N,, (dependi rig on Ny and N ) are functions
of 0, the penetration ratio and the soil-structure properties along the shaft, Equation 1.5.2.
gives the base resistance of the foundation and any skin friction along the shaft must be
added to obtain tie total bearing capacity. 'I he equation may be used for only two special
cases. The composite factors both depend on N which in turn is governed by the interaction
of cohesion and weight. For a general solutionjit is only possible to determine Ncq and
N-/q when one or other is zero or may be neglected; N cq can be found for a purely cohesive
material when 0 = 0, and Nyq for a purely frictional soil. No solution is possible for a
frictional soil with cohesion unless some arbitrary division of Nq is assumed. In other words,
the dependence of the bearing capacity factors on the cohesion to weight ratio is hidden in
the calculation.

Balla25 considered the same problem of a deep foundation but recognised that the
bearing factors depended on the cohesion to weight ratio in addition to 0 and the penetration
ratio. The same sliding surface was used to calculate all the N factors and is shown in
Fig 1.5.2. lie observed that Terzaghi's proposal for two curved failure surfaces to be
parallel and coincident with each other at point C is impossible, and opens them out to the
correct angle. Unfortunately he retains Terzaghi's small wedge which still leave angle ABC
incorrect, and an intersection of four failure planes at point C which is not possible for a rigid
Coulomb Material.
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According to Balla, the failure surface CDE is made up of a circle C) and a straight
line DE. It is not possible for a rigid body bounded by a circle and a straight line to move
without opening up large cavities along the boundary CUE. Neither is it possible for the
circular segment OCD to rotate pushing the triangle ODE upwards without cavities appearing
along the line OD.

Another serious criticism is that the theory has been restricted to a maximum penetra-
tion ratio of 1.5, without alty possibility of an extension to greater depths. This limitation
has arisen from the assumption that the plane boundary I" must always make an angle of
774 - 0/2 with the horizontal free surface. This is a valid statement in itself but it has two
repercussions: first, that the increasing effect with depth of the fdundation side thrust on the
base resistance cannot be evaluated and secondly, that it allows for no minor re-orientation
of the failuie surface. For example, an inflexion in the curved boundary or a slight angular
displacement of the plane shear zone boundary suggested by Nleyerhof would satisfy this
condition without giving additional complexity to the basic theory. On Balla's rigid
interpretation of this condition, the rupture distance must increase rapidly with depth and
ultimately tend to infinity.

The analysis is based on IKotter's equations of static equilibrium and the moment
referring to the ccntre of the -ircular arc is also zero. Even though a surcharge zone is not
delineated, it is noted that the final solution is presented in the usual form of a three part
additive equation, instead of combining all the forces due to weight in a single N factor
(Eqn 1.4.1.).

The N factors according to this theory are markedly different from all previous values.
The N- factor is much greater dnd therefore the brmadth of the foundation has more influence
on the value of the bearring capacity (Fig 2.10.1). The increase due to depth, however, is much
less than in Meyerhof's theory, but the latter is hardly a proper basis for comparison because
of the anomalies previously reviewed. Balla also stated that the theory is best aplied to
granular soils or to those with little cohesion, so that Nc is not of great significance.

1.6 Empirical Factors in the Basic Equation

The theoretical analysis may be applied only to the idealised situation of a centrally
loaded continuous footing in an idealised material. For more practical problems in real soils,
many other effects must be considered by empirical changes to the basic equation.

The influence of soil compressibility and the state of drainage presents an added
complication to in-situ testing. In a compressible material, the practical application of any
theory calculated for soils at their minimum density will lead to sources of error. Terzaghi 15
overcame this problem by suggesting an empirical reduction in tan 0 to two thirds of its
maximum value, whereas Meyerhof t6 introduced a compressibility factor which varied from
tan 0 for shallow footings to 0.85 tan 0 for deep footings. Similar factors weie evolved for the
influence of ground water conditions but are not of relevance to the present study.

This practice was extended to evaluate other modifying influences such as shape and
depth of the foundation and inclination or eccentricity of the load. Denoting the shape factor
s, the depth factor by d, and the inclination factor by i, lBrinch [Hansen 2 6 generalised
Terzaghi s formula by multiplying each term with a set of factors:-

cNcscdcic + qNqsqdqq + YBNsydi. 1.6.1.
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Using the known relationship between Terzaghi's N c and Nq factors, the number of
parameters may be reduced by rearranging equation 1.6.1. in the fonn:-

p (c + q tan 0) Ncscdcic  + -Y 1.6.2.

However, this method of overcoming the limitations of a basic theory, which itself
contains many simplifications, can yield some anomalous results. For example, d- must
always bq equal to unity because N-, is calculated for c - 0 in the basic equation, and tile
inclinations of the load would tend to cause assyrnetrical failure instead of the symmetrical
failure assumed in the original theory. Thus, both depth and inclination factors must bear no
relation to the original theory to be of practical significance.

On the other hand, it is realistic to adopt an empirical shape factor to modify the
bearing capacity of a continuous strip footing to that of a rectangle on the basis of similarity
of the soil movement. The factor is then only accountinvgfor the end effect; the technique
becomes increasingly suspect however, as the strip approaches a square or circle. Conversely,
the aspect ratio L/B is important in the selection of the length of footing to represent ivo
dimensional failure in model studies. Skempton 27 investigated the influence of shape for the
special case of clay arid proposed that:-

INC (rectangle) 1+ 0.2 L3j] N0 (strip)

Meyerhof' 6 presented his experimental data in the form of a graph and suggested that the
combined shape factor is a function of density, 0 and the peneiri on ratio. iBrinch hlansen 2 6
combined these results with Terzaghi's and formu!2!ed ft:ither shape factors independent ofdepth. For small aspect r-atios, cohiesion and surchirge becomle increasingly Mole important

than the weight of the material:-

Nc (rectangle) =  1 + (0.2 + tan 6  ]Y.\]Nc  (strip) ..... 1.6.4.

N-y (rectangle)[I - 0.5 (0.2 + tan 6 P)R N) strip)

There is ample experimental evidence to corroborate these empirical relations for
shape and they are later used to deterrminc the aspect ratio of the fooiig- u"ed ill t're current
tests.

1.7 Semi Empirical Analysis

The problems involved in soil failure beneath vehicles are similar in nature to those
of civil engineering earthworks but are generally more complex. All the early attcnmpts to solve
them have been based on describing the soil by measiring its response to certain simple load-
ing tests. Empirical curve fitting equations wer used to describe the experimental results,
and these used as a basis of mathematical analysis of the more complicated vehicle situations.

The general pressure sinkage equation, which forms the basis of the current empirical
approach is attributed to l3ernstein 2 8 and Letoshnev29 and is of the form:-

p ..... 1.7.1.
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where p is the pressure beneath the footing. The values of the sinkage modulus k and the
exponent n were obtained by plotting experimental pressure sinkage results on logarithmic
axes. The exponent was found to be fairly independent of the soil properties, but it was later
found that the sinkage- modulus was a function of the size and shape of the footing.

In an attempt to improve 1ernstein's equation to cover the complete soil range,
Bekker 30 proposed that the relationship may be cxpressed by:-

rkc + k 0 } z 1.7.2.

..
where k. arid k o ate soil constants which may be determined from pests for two different plate
sizes. Although kcis predominant in cohesive soils and k o in frictional soils, they are not
true soil constants and were still found to vary considerably with plate size and shape.

A more recent change to the pressure sinkage relationship has been suggested by
Reece 3 l. Influenced by Meyerhof's bearing capacity theory, he proposed the equation in the
form:-

c -/yB k 10 ) ..... 1.7.3.

which is dimensionally more attractive and introduces the various parameters in a more
acceptable way. The relationships between Meyerhof's bearing capacity factors (equation
1.5.2.) and the constants in the equation above are given by:-

Ncq P kcB t 1.7.4.

Ny/q PO0 f{z}n

Equation 1.7.4. links the empirical approach with theoretical soil mechanics and it
should be possible to calculate the values of k'0 and k'c for compact soil'. This is, in fact,
the way in which this project originated. Even for loose soils, an equation like 1.7.4. which
is based on some theoretical reasoning should be superior to others and a comprehensive
series of measurements made by Vhills 3 2 has endorsed this.

1.8 Dimensional Analysis

Dimensional Analysis has also been used to describe the phenomenon of penetration
failure by means of a dim-nsionally correct equation containing selected variables. Although
a number of variables in the problem may be reduced by dimensional reasoning, er the
complete solution nor the inner mechanism is revealed.

The most important variables in the problem of penetration failure may be summarised
by the following equation:-

p = f (,Y, c,v,d,z) 1.8.1.

where v denotes the velocity of penetration and d the characteristic dimension of the probe.
With the exception of velocity which may be neglected 33 , these parameters have been combined
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to form almost-every conceivable dimensional group and inverse function, some of which bear
little relation to the parallel work in soil mechanics.

In a more realistic study of model analysis for earthmoving equipment Emori and
Schuring 3 4 employed the following functional equation to describe soil deforming processes
in general:-

p/d 2  f f(0, c/Yd, v 2/gd) ..... .. 8.2.

For the specific case of penetration failure in a composite soil with both cohesion and
friction, it was tentatively suggested that equation 1.8.2. could be written in the form:-

p/ B2B c/YB. f(O) + f2(O) ..... 1.8.3.

where the characteristic dimension B denotes the breadth of the footing and f and f, are
functions of 0. As the comparison of various footing sizes is possible only when therc is
both geometric similarity and a consistent penetration ratio, it follows that the func-.ions fl
and f2 are also dependent on the aspect ratio, L/13, and the penetration ratio.

The final form of equation 1.8.3. is identical to the current civil engineering
approach, but it is no nearer the ultimate solutio.i; the main contribution of the techniquC lies
in its ability to present the complexities of the proble,-, in an organised manner.

1.9 Experimental Measurements

The experimental verification of any failure theory in real soils is extremely difficult.
The measurement of the soil parameters requires a high degree of accuracy and considerable
skill. The soil structure variables, and the variation of the soil parameters with bulk density
must also be determined. Osman s su,!n"arised the results obtained by translational,
compressive and torsional methods showinti that identical values of cohesion and 0 can be
measured independently by different methods of testing.

In an attempt to verify the actual shape of the failure zone beneath a foundation, many
workers 19, 36-39 have employed a photoviraphic technique through a glass sided tank. No
reference in published literature has been found on the effect of soil interface frction and
the validity of any photographic analysis is open to question. This problem may be overcome
by testing the model in the centre of a tank full of sand mixed with metallic particles. An
X-ray technique can then be adopted, but the complexity is a very real deterrent. Alternatively,
the sand may be replaced by cylindrical metal or wooden rollers of var ing diameters a T. 'J'his,
however, diverges frori the physical reality of a natural soil. The over-simplified two
dimensional mechanism of failure exhibited by the roller model call not yield sufficient
corroborative evidence on its own merits alone but it does provide a simple tool for demonstra-
tion purposes during the development of the theory. F;or the additional tests, the most
convenient solution is to carefully investigate and minimise the effect of interface friction
prior to analysing the experimental data 4 0.

Both the force measurements and the failure geometry depend on plate size and shape.
Tn influence of aspect ratio in the study of two dimensional failure has already been
stressed. Not only is aspect ratio important, but also the breadth of the footing. Dimensional
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reasoniTn Co n no0 lonerl new Pp eepeciallIy in comapre ssile soils, wYhen the plate breadth
is sula ill relalvol to pariiceC Si7A bDeC'aua lateral cornpiessioii occurs- rather thanl Feneral
shear f3 'lure. It hlas LEn i~ cs that thle minimumn breadtl lies betweent I and I ':in and
will increase With cpr-sP iy3*As this estimate of the minimum breadth was obtained
in a soil which was below~ Olme n axinur bull, density, it is probably on the safe side.
Neverthrlcss, anv results obtalueti for footings of less than 1 inch wvide must remain suspect.

'll( ava il ble pe at ul,, peir Iraion te-st data for Iii igh a spect ratio footings are
surprisinly,'1 li cd cocr,.a reii a, :ti the vast fund of tlee:-ctical work. 'The major part of the
ava ilabhle experimenti ml a rk ihas beeni carried out in a dry sand whichI is convenient inaterial
to use, or in soils wvith little cohes ion. In htis pa per, Balla 25 has suniarised the experi-
moental datax for tihe surface bearirt capac ity of foundationis and Presented a c(_tnlpariso
between tlivi ret ical aiid t,,st r-su Ito a In theI form of a graphi. Selig and \IcIKete4

1 conducted
t ,ic loading, test,, onl swall fnotin.-7 rest tog on the sail surface. \!eVerjof 16 also presented

detailed epinntlverification of this the ory for derp sinkatpe over the complete soil range.
Morn recently, test r,uiIs, llave( been publi ied by Mobis 4-, Lebce and Biarez tit-~
hatter includingi skiin friction data. 1ii awever, in miany deep loadi n trials witi st rip founda-
tions, the effect of skin friction a long the sha ft is not considered separately. Althiuigh mnuch
morn resea rch on shkin rns i saiice is avtAilable for piles, the effect of tlie sin.ai aspect ratio is
unknewn,. Unless thec exact nature of all the test conditions are fully described, it is not
always possible to apply thre rusults.

A similar situation exi-its in the fiel)d cf soil vehlicle mechanics, and test data for
footing,; of reasonable size( and shiape in uniform cotnstant soil conditions are not readily
avail a Ll~e. 0111lV one test Inl eo:ipt sand by M\lls 32may be commpqari'd w ithi the present thieory
for incompressible soils.

F'inally, the prediction of ithe( penietratioin resistance by means of a quasi-static
analysis depe2nds on ileglig-ible veloicity effect. In a study of this phienomienon, Vcmsic, Banks
and \oodward4 3 have dernonstrated thiat the rninirounm. bearing capacity of a surface footing in
both dry and satur-ated sand occur.s at a penetration velocity of 0.25 in min and is approxi-
'mately 30"C less than that for s tatic loading. TPhereafter, the bearing capacity increases again
at a slower rate with speed. hiales and lleizedus3 3 found that the bearingcaciyistute
sand at a penetration speed of 1730D in mi ii was up to 3W(l higher than that at '?.6 i;i nin. The
apparent drop in bearing capacity at low speedl is attributed to an increase in comepressibility
when particles have insuifficieint time to reorientate after each new load increment. As speed
increases the loading is too rapid for shear failure to occur along the pathis of least resistance
and punching shear replaces general shear failure. At very high loading- rates in saturated
sand, apparent cohesion is also developed by the negative pore water pressures. Similar
velocity effects were obtained by Geodman 14from small scale footing tests on clay. It may
be concluded, thjerefore, that the effect of veoiyis not inisigaificant. IHowever, in the
vehicle situation where highi Iates of loading occur, it is justifiable to assume that the pienetra-
tion resistance is eqaivalent to the static bearing capacity by neglecting the trough in tile
curve of load versus speed.
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2. THEORY

Soil Mechanics cannot be a rigid discipline and cannot be treated as an exercise in
mathematics because the mathematical properties of soil are so complex. An adequate solu-
tion to any problem can be achieved only by a scientific cormlination of theory and experiment.
It has been proposed that nothing less than the folloNeing constitutes an adequ3te basis for a
soluti an.

First, the properties of the idealised soil for the theoretical analysis must be fuily
stated. This must be followscd by a careful description of both the behaviour of such soil and
the simplifying assumptions which am necessary to overcome athematical difficulties. These
soil properties and simplifyinE assumptions must ],e com.bined ;ith the normal condition~s of
equilibrium to determine the shape of the failure surlace % ithin the soil. Ideally every part of
the soil involved in the failure should be in equilibrium. This noy prove impossible, but the
departure from the correct equilibrium conditions must be small and must be described
quantitatively. Furthermore., the correct stress conditions must exist at every point on the
boundaries. Once again, this tay not be possible, bul divergencies from the ideal must be
small, they must be shown to cause only snrall changes in the final answers and, ideally, they
should be shown to represent an approximation to a more accurate but more complex failure
pattern. The failure pattern so developed must be ver~fied by carefully controlled experiments
on a limited number of soils which cover a large part of the possible soil range. Once the
failure pattern has been established, the forces involved can be calculated and a suitable
computer programme developed. The results of these force calculations must be experimentally
verified over the same wide range of soil types. Finally. generalising equations must be
developed to enable the communication of the re.,uLs of the compater programme in a simple
way. The errors involved in this generalisation must also Le .tated.

The whole of this process of interlocking theoretical and expcrimental me:hods is
necessary because any si..ble part is subject to such large possibilities of error. It is difficu!t
even to measure the basic soil parameters as they exist in the problem under investigation,
far less to apply them in a theoretical analysis, and it is difficu!t to repeat experiments
maintaining the same soil conditions. The process dencribed above would require such a total
corroboration of theory and experirent that it would Leave little room for doubt that not only
"ere the right answers achieved, but that they were achieved for the right reasons.

2.1. The Basis of Soil Faiur." Theor,

The soil is heavy, 6nd it is assumed to be homogeneous, rigid and incompressible and
not to dilate when shearing. 1t fails according to Coulomb's equation from %Nhich it results
that lines of incipient failure occur in pairs making an angle of ,'2 + 0 to one another in a
plane strain problem. This is an idealisation in that al soil is not quite incompressible or
rigid and Oues dilate slightly as it shears. It will be shown later than an initially homogeneous
soil can become completely non-uniform during loading.

When the soil slides along the surface of the leading structure, the stresses at the soil
structure interface are assumed to be described by a modification of Coulomb's equation. In
this, the cohesion, c, is replaccd by the adhesion, ca, and the angle of internal shearing
resistance, 0, by the angle of soil-structure friction, . Under these conditions, the soil-
structure interface is not a failure plane, and if an interface exists, the correct orientation of
the slip planes must be detenined from %lohr's circle.
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Tb., above failure criterion together with known boundary stress conditions are
sufficient to make certain rather simple problems statically determinate, and a rigorous solu-
tion may be obtaired by Static Analysis. Frequently, this technique can be employed in
special cases ,hich form the basis of a more general theory, but when the stress boundary
conditions cannot be rigorously determined over the entire failure surface, the complete solu-
tion of many practical problems requires the adoption of further kinematic assumptions.

In most soil structure problems, the point of failure is represented by the loading at
which flow begins. There are certain characteristics of soil flow which are common to the flow
of any -her incompressible material. The motion will arrange itself so that the energy, lost
in the friction generated by the soil flow, is minimised. This requires that the paths of
individual particles are as straight as possible and only deviate from straight lines by making
the smallest angles of deflection on tile largest radii. Soil will not flow along paths with sharp
corners except on a plane of symmetry.

The kinematics of soil flow in response to a small movement of the structure can be
simplified by defining only two possible types of flow. In the first, large masses of soil move
as rigid bod .. It is not possible for soil flow to result in the appearance of large cavities
within the soil!; this is a common observation which depends on the low strength to weight
properties of soil. If the soil does not move as a rigid body, then it is convenient to describe
the other type of movement as shearing ilow. Zones of shearing flow will generally be bounded
by non-circular curves and when the soil exhibits high strength to weight properties, these
boundaries need not he shar)ly defined. A given displacement can be achieved with a minimum
energy input by riid body motion. This is therefore the preferred mode of movement, but may
not be possible due to the boundary conditions of the problem.

The static analysis of rigid Coulomb materials leads to the concept of continuous ..ip
line fields. In practice, thcs? are only continuous in zones of shearing flow. The slip line
fields are non-existent ovev the main area in which rigid body motion taken place. The absence
of coan 1a. line fields and the occurrence of rigid body motion is made possible because
the s( itly compressible. Definite deformations along the slip surfaces are necessary
in ord, lop slip lines and soil failure.

The forces involved in the shearing of soil have two components, one due to the
cohesion and internal friction of the soil, and the other due to the weight and the internal
friction. In practice, these forces are generated together simultaneously along the same
failure plane whose path is dependent on the angle of internal shearing resistance. The
relative magnitude of these two components can vary, and the solution should be correct when
either is zero. It seems logically justifiable, therefore, to divide the force on the structure
into two parts, one part due to the cohesive-frictional soil forces, and the other due to the
weight-frictional forces. This simplifies the analysis.

The equilibrium of the soil masses at failure depends on the distribution of the normal
and shearing stresses on the straight and circular failure surfaces of the rigid body zones.
(This does not include the zones of shearing flow). This distributior, is difficult to obtain by
rigorous methods. it was originally proposed to assume that the stresses duu to chohiesive-
frict'onai forces were distibuted uniformly along the straight or circular failure surfaces and
further to assume that the stresses due to the weight-frict jn 1 forces were distributed in a
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hydrostatic manner, namely, that they were proportional to the depth, zo, from the nearest
part of the free soil surface vertically above the failure plane. These two assumptions am
described by the following relationship:

aOc , Oc d- k0c 1 .. . ... . ... 2.1.1.
0yC CC "tyc k 0 y z 0

Along both the failure surface boundaries of any single rigid body zone, the two co-
efficients k~c and kdy were assumed to have constant values which satisfied the condition
that the values must be identical at the intersection of the two boundaries. The determination
of the two coefficients from the horizontal and vertical equilibrium of the plane shear zone gave
the correct relationships for the active and passive Hankine zones. With the introduction of
sinkage, an unbalanced couple yielded a source of error.

In the following analysis the relationships are modified by considering rotational
equilibrium of the plane shear zone and include a dimenionless exponential term such that:

170 -C'0c ,C k~ nCO o(130)

S 7 c C 2 k nQo ..... 2.1.2.

where -1 < n < 3. This effectively permits a variable Irvs.,ure distribution to be used along the
failure planes to obtain complete equilibrium. This does not affect the limiting case of the
passive Rankine zone or the condition that the values of the coefficients for the two planes
must be identical at the point of intersection. It should be noted that these relationships are
purely empirical. The basis for their selection is further discussed in Section 2.9. in relation
to the overall theory of penetration failure, and the merits of the system may be assessed from
the analytical results.

"fhc final solution to a soil structure prolem is most valuable if the results can be
extended over the full range of soil and structural paraneters and presented in a readily usable
manner. This is particularly tiue in1 the castV Of .Oil-MaLi e mechanics where a general pic ture
of performance over a wide range of soil typs is requited. There are three groups of variables
involved in a soil mechan. s problem-the soil and soil to structure properties, the structural
shape described by angle, and other ratios of its dimensions and, finally, the size of the
structure and the associated soil masses. The complete solution has to be such that an actual
problem can be solved by means of a set of graphs or tables and a slide rule.

By considering the cohesive, "eight and surcharge terms separately, the complete
solution may be presented in the form of 'in additive equation. Reece 4 7 has proposed that the
most complete form of this equation is:

F (Ib) d 2cNc + d 3}Ny + d 2qNq + d2ca N a ..... 2.1.3.

where d represents the chamcteristic dimension of the structure. T'his equation may be used
to describe the force requ'red to fail soil by any kiad of structure whatsoever. The fourth term
takes into account the adhesion between the soil and the s:ructure. The N factors are functions
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not only of 0 but also of the soil structure friction and the shape of the structure. It should
also be n, 'ed that the surcharge term must not be confused with the weight of the scil
involved in the soil flow. it will generally refer to some loading on the soil which does not
contribute any shearing, for example the loading applied by a smooth surface foundation of
some adjacent building.

The additive nature of this equation follows from the addition of the various
components of the soil force, and the dimensionless parts are necessary in order to provide
dimensional homogeneity. The weakness of this equation is that the N factors are not
independent of the values of the dimensionless terms in the equation. The use of the
equation will, therefore, involve an error, which can be computed and must be presented ia
a complete analysis of the problem. Another possibility is to compute the N factors for
different proportions of the four sources of force on the structure and it is shown later that
this approach is applicablr to the case of the penetration resistance for a deep footing.

In a recent analysis of the retaining wall problem4", which includes surface bearing
capacity, the following scheme was adopted:

Ny calculated with c/yz q/yz = ca/Yz = 0

Nc calculated with c/yz 1, q/yz = ca/,/z = 0

Na calculated with c/yz ca/yz 1, q/yz 0

Nq calculated with c/yz 1 , c/yz = ca/Yz = 0

The NY and Nq factors are, therefore, correct for a dry sand, whilst the Nc factor is
computed for a soil with weight but no adhesion or surcharge. The Na factor is calculated for
a soil with weight and cohesion, which is reasonable since it is not possible to have
adhesion without cohesion. The actual value of c/yz, ca/yz and q/yz = 1 was chosen
for compmt6tion:l simplicity and it was later shown that the errors would not exceed 5% over
the complete range of likely combinations of these properties.

Recent work has cast doubt on the necessity for the minimum value postulate in soil
mechanics although, initially, tremendous effort was expended in obtaining it for the computa-
tion of Terzaghi's and Meverhof's bearing capacity factors in this Frogramme of research and
in the analysis of the retaining wall problem 4 8. These minimising methods woulJ seem better
based upon the following simple common sense proposition:

If a family of failure surfaces can be found which everywhere satisfy the conditions
of equilibrium, the boundary conditions and the idealised soil properties, then the
soil will fail on that surface which requires the minimum force.

In fact, such a family of failure surfaces do not exist and, by establishing the only possible
failure surface which satisfies these conditions, the minimising procedures are not applicable.

For example, in the retaining wall problem, the correct failure surface may be
selected by considering the stress conditions at the interface. For a purely frictional soil
with known interface friction, the correct stress conditions for an element of soil adjacent
the structure may be determined from Mohr's circle (Fig 2.1.1.). The orientation of the slip
planes at the structure, angles e and 6', may then be deduced. By this mean.;, the correct
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position of the spiral pole which gives the correct stress conditions on the element at the
soil-structure interface and at tile passive Rankine zone may be located. It is recognised that
the location of the pole by this technique does not eliminate stress discontinuities along the
full length of the interface, but by t.- selection of an element at some point other than at the
tip of the wedge, the discontinuities can b, minimised. Alternatively, the correct stresses
along the full length of the interface may be obtained by interposing a zone of plane shear
between the interface and the zone of radial shear (Fig 2.1.2.). This is more applicable to
the case of a wedge shaped foundation. In Mintskovsky's analysis 49, for example, this
modification does not result in serious deviations from the original criteria assumed for a
sliding surface.

A further problem arises with the addition of cohesion and adhesion because the
stresses become indeterminate unless a value for the normal stress is assumed (Fig 2.1.3.).
Variation of the normal stress in the range, 0 .5 yz to 3 yz, makes little difference to the angle
between the soil structure interface and the slip plane. For this reason, an arbitrary value of
yz was applied to Mohr's circle in the investigation. The positions of the spiral centre
derived from the analysis were compared with those obtained for the minimising procedure in
reference 48. The correlation was very good indicating that the minimum value postulate
degenerates into a very complicated method of determining t-e correct stress conditions.

Adopting this technique in the determination of the failure geometry for the surface
bearing capacity of a continuous flat footing, the correct stress conditions are satisfied only
by locating the pole of the spiral at the corner of the footing. Furthermore, it will be shown
in a more detailed investigation of the unrestrained pole (Section 5) that the nature of the bear-
ing capacity calculation is such that it cannot tolerate unrestraint and always tends to adopt
a pole close to the corner of the footing regardless of the complexity of the minimising
procedures.

2.2 Failure Geometry

The soil displaced by a moving structure will always endeavour to minimise the energy
lost in flow. It is quite prepared to modify the shajx of the structure to make it more stream-
lined, by arranging a fixed soil body between the structure and the flowing soil. A fixed soil
body will form, if the energy losses are reduced by a less ,npular ilow path, by a larer radius
of turn or where shearing flow can be replaced by rigid body motion. Its actual shape and size
will be determined by the fact that it is made of soil and must satisfy the requirements of the
ideal soil propeties, the soil structure properties and the conditions of equilibrium. The
existence of such a body covering the structure surface will greatly simplify the problem if
for no other reason that it eliminates two of the variable (i.e. S 0 and ca = c). The
determination of tile existence and shape of such a body is therefore the starting point for the
solution of any problem.

When a continuous footing is forced vertically into a uniform soil under ideal condi-
tions, the flow of the displaced soil must be synimetrical about the vertical axis through the
centre of the footing in order to ninimise the lateral soil disturbance. As two sharp directional
changes in flow are imparted to the soil beneath the structur when it is forced to penetrate, a
body of soil attached to the bdse of the footing could modify the structure shape and reduce
the enrgy losses by providing a less angular flow path if the conditions of equilibrium are
fulfilled (Fig 2.2.1.).
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The shear stress at any point on the base of a perfectly smooth footing is zero, and
the maximum stress must be normal to the base for the footing to penetrate into the soil.
Thus, the base of the footing is a major principal plane with lines of incipient failure
inclined at angle of -i4 + 0/2 to the horizontal. As there are no shear stresses on a vertical
plane through the axiz of the footihg due to symmetry, the slip lines ary also inclined at angles
of 77/4 + 0/2 at t.is point. Assuming that the body of trapped soil is bounded by straight
failure planes, a wedge with sides inclined at angles o" 17/4 + 0/2 to the horizontal is
formed beneath tile footing (lig 2.2.11,.). The to lateral constraint of the soil forces, it
remains permenently in a state of elastic equilibrium and is unaltered by sinkage. There is
no reason to suppose that curved flow lines, requiring at least one point of inflexion to join
the points of known stress, could replace the straight lines. This would not only yield more
abrupt changes in flow but also impart a rather peculiar slip line field to the adjoining soil
mass ("ig. 2.1.1c.). On the same grounds, two wedges, moving laterally, are also infcr',)r
because the flow path must then revert to one with sharply angular changes in direction
(Pig 2.2.ld.).

If the base of the footing is rough, shear stresses of unknown magnitude and distribu-

tion could be mobilised, lowever, if the wedge is generated and is in equilibrium beneath
a perfectly smooth footing without the development of any shear stresses, it is not conceiv-
able that base roughness would in any way influence the shap of the fixed soil body. There
is no need for shear stresses to be developed along the base, and there is no way of mobilis-
ing them with symmetrical loading tinder ideal conditions. The base of the structure is no
longer important and is replaced by the two soil boundaries of the wedge both of which are
failure planes. The directions of the other families of slip lines are known from the conditions
of stress at the wedge tip and must emanate at angles of r.2 + 0 to the wedge boundaries.
As the geometry is symmetrical about the central axis of the footing, the failure surface on
only one side is subsequently considered.

The particular case when sinkage in zero and the footing smooth is capable of
rigorous solution by the method of Static Analysis, and this can be used as the starting point
in the development of the failure pattern. Fig 1.2.4a. shows Sokolovski's 1 solution for a
foundation obliged to fail on one side only. The zone BDE is always straight sided (Rankine)
as long as the surcharge is vertical. The zone ABC is doubly curved Lut as long as A\ is
smooth, angles CAB and ABC must always be w/4 + /2. Angle ACB is -r./2 - 0 under any
circuistances. Although the case of symmetrical failure was not considered, it is not
difficult to see that symmetry requires that C shall lie below the mid point of All, and the
angular requirements, mentioned above, force ABC to become straight sided. The curved fan
BCD then becomes a radial shear zone bounded by a logarithmic spiral and the total failure
pattern is shown in Fig 2.2.2. "This conclusion is confirmed by Josselin de Jong 4 . The
wedge is the same shape as had been deduced already.

For the more general case of shallow and deep foundations, there must be a logical
transition from the failure geometry of the limiting surface case. There are two possible
modifications which can be made to the failure geometry to account for sinkage. First the
shape and extent of the radial shear zone may remain unaltered, and the boundary DE of the
plane shear zone may be produced to meet the surface at the correct angle of 17/4 - 0/2
(Fig 2.2.3.). This configuration is obviously possible at very small sinkages and has much
to commend it. For instance, the correct stresses are attained along the free surface and
along the smooth foundation shaft, and the boundary conditions are nowhere violated.
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It does not apply to a footing because there is no shaft support to cause the passive
pressure. It does not even apply to a foundation because it has been shown by experiment
that pressing the footing down does not cause 6'e soil to exert full passive pressure against
the walls. Also, the rupture distance, GE, does not increase linearly with depth, and conse-
quently this type of failure may be rejected. Alternatively, the zone of shearing flow may Le

-- extended in conjunction with a change in the shape of the plane shear zone (Fig 2.2.4a.). The
rupture plane, BD, is the last radial slip line of the radial shear zone BCD. The plane shear
zone BIJEG is delineated on two sides by a pair of failure surfaces, 130 snd DE, making an
angle of w12 + 0 with each other. The boundary. DP, no loner satisfies the stress conditions
at the surface but this requirement can be fulfilled without adding complexity to the failure
geometry, by a minor re-orientation of the slip plane, DE'.

The failure surface, CDE, in Fig 2 .2 .4 a.*is bounded by a logarithmic spiral and a
straight line. In a dilating material, it would probably be bounded by curves such as are shown
by dotted line CDE. The choice of the dimensions of BCDEG by means of the Coulomb
criterion and static equilibrium ensures that the surface is little different from the real one;
the approximation being used to simplify the mathematics involved.

The failure geometry can be extended logically to deep foundations by further extension
of the radial shear zone. The limiting case depends on the nature of the support and the inter-
face properties along the foundation shaft and on the soil properties. In very strong cohesive
soils, where the influence of soil weight may be neglected and the foundation shaft is
unsupported, it is assumed that the failure pattern proposed bv Jaky 8 occurs (Fig 1.3.2.). For
any other cohesive-frictional soil where weight is important, this type of failure is largely
discounted. It is more likely that the mode of failuru reaches the limit shown in Fig 2.2.4b.,
then changes to that described by Vesic 5 at deep sinkage when the ;ass of soil affected by
the penetration of the footing becomes sufficiently great to 'absorb' the displaced soil by soil
compaction (Fig 2.2.5.). Vesic has sugge-sted the possible up;.er lim-it for peneral shear
failure in sand occurs when the skin resistance distribution changes from hydrostatic to
uniform. The critical penetration ratio is dependent on density and (4. The iinportance of this
change n the mode of failure only becomes sipifican: in the present study of incompressible
soils when 0 is small. It is important to note, however, that the effect of soil compressibility
on the mode of failure even in the highly frictional materials tested is to reduce the penetration
ratio at which this changeover occurs.

As the pressure exerted on the foundation shaft constitutes one of the unknown para-
meters, the problem is simplified by assuming that the vertical %%all BG is self-supporting and
represents a free surface. From practical observations, this is quite justifiable over most of
the soil range to depths in excess of those investigated. It is also particularly relevant to
vehicle running gear. One major exception, however, i, a dry frictional material. It is proposed
therefore, to develop a theory of penetration failure on the following basis;

a. Dry frictional material-to include the effect of the shaft support or of material
falling into the shaft, forming a soil to soil boundary at the central axis of the footing.

b. Cohesive-frictiod(al material-to assume the shaft is unsupported, but to make
provision for further extension to a supported shaft.
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The maximum height of the unsupported shaft for a cohesive-frictional soil may be
evaluated, approximately, by considering the stability of a vertical bank. It can be shown that
the uriti..al ht-ight, itc, is given by the equation:

HC = 4(ch) tan (45 + 0/2) ..... 2.2.1.

and by substituting values for the soil density and 0 of 0.06 lb in-3 and 400 respectively, a
42 in high, bank is stabilised when the cohesion is 0.03 lb in2. This height of batik is
equivalent to a penetration ratio of 3 for a 14 in wide vehicle track Pid represents the
upper limit of sinkage; for different values of the parameters the value of lIc is given in
Fig 2.2.6.

The zone BDEG will tend to behave as a solid body (Fig 2.2.4a.). Of the two failure
boundaries, one must form the last radial slip line of the radial shear zone and therefore must
emanate from the comer of the footing; the other must make an angle of n/'2 + 0 to it and be
a tangent to the curved slip line, thus forming the continuous outer boundary of the failure
surface. These two plane failure surfaces need not be of the same length. From the conditions
of equilibrium there is an infinite number of possible configurations for the zone which are a
function of the sinkage and the soil parameters. Only one geometrical shape fulfills the
condi:ion that the junction of the two failure surfaces must lie on the spiral surface which
then determines the failure geom.ctry for the particular parameters which have been selected.
As the determination of the failure geometry depends on the equations of equilibrium, it is
fully covered in the next sub-section.

Summarising the important aspects of the failure geometry, it is truly symmetrical about
the central axis of the footing and consists of only one figure of rupture for a soil with both
weight and cohesion. It comprises three different zone types;

a. The fixed soil body is a single wedge with base angle of 7T/4 + 0/2 regardless
of base roughness.

b. The zone of shearing flow is formed of a family of radii and logarithmic spirals
whose pole lies at the corner of the footing.

C. The plane shear zone is bounded by one free surface, the vertical wall of the
shaft, and two failure surfaces. These surfaces make an angle of 77/2 + 0 with each
other and one determines the extent of the zone of shearing flow. The shape andextent of the plane shear zone is obtained from the conditions of equilibrium.

The outer boundary is a smooth curve to satisfy the flow criterion. The size of the failure
geometry is determied by 0, the penetration ratio, the cohesion to weight ratio and the shaft
parameters.

2.3. The Calculation of Penetration Resistance

The calculation of the penetration resistance of a continuous footing may be considered
in three parts. First, the figure of rupture is obtained by considering the equilibrium of the
straight sided zone. The magnitude and dire-tion of the soil forces due to the weight of the
soil mass within the failure zone, and those acting on the boundaries are determined. Finally,
knowing the directions of the resultant forces, the penetration resistance is evaluated. The
general procedure, assumptions and approximations are discussed in the following sections and
the complete theoretical analysis is given in the appendix.
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It is assumed that, for static equilibrium in a cohesionless soil, the weight, I , of the
plane shear zone BDEG is balanced by two weight-frictional boundary forces F-), and F,2
on any pair of failure planes, ED and UB respectively and by a shaft force FyS, on BG
(Fig 2.3.1.). The weight acts vertically downwards the boundary forces act at 0 to the normal
of the plane and the shaft force acts at an angle 6 to the normal. The two boundary forces are
governed by the same boundary coefficient of earth pressure, k6.,, modified in accordance with
equation 2.1.1. and the normal stresses are distributed in a way which diverges slightly crom
the hydrdstatic manner. The shaft force is governed by the coefficient of earth pressure kys
which is assumed to have a known value and by a hydrostatic stress distribution. Considering
any line, BD, sloping at ap angle, , to the horizontal, the three equations for horizontal,
vertical and rotational equilibrium are respectively:

/ I cost - F.2  sin ( - ) F- scos ..... 2.3.1.

cy2 cos (0 - ) " F, sin = W, + FyS sin 8 ..... 2.3.2.

Wjdj - Fy1 d3 - FY2 d4 + Fy sd5  = ..... 2.3.3.

In simple terms, there are three unknowns, the boundary coefficient, the boundary
exponent and the slope angle. These are functions of the angles of internal and interface
friction, the shaft coefficient of earth pressure and the penetration ratio. However, the
relationships are extremely complex because of the exponential terms, and the equations can
be solved only be substitution. The equations are written in general terms so that the slope
angle can take any value in the range - (45 - 0/2) < 7 < 90 %hen the sinkage is greater th
than zero. In other words, the extent of the logarithmic spiral zone may vary from the surface
condition up to the full extent where it breaks into the foundation shaft. Normally, however,
the calculations are terminated when the value of the slope angle reaches 0, so that the
failure geometry for the limiting case is that shown in Fig 2.2.4b.

When cohesion is added, six further forces must be considered in the equations of
equilibrium. First, there are the cohesive forces, C1 and C2 , acting along the boundaries
DE and 13D, respectively, and the adhesive force along the shaft, Cs. The mrgnitude of
these forces depend on the length of the relative surfaces and the soil or interface properties.
The cohesive-frictional boundary forces, Fc1 and F, 2 , act at 0 to the normal of the pianos
)E and 13D, and the cohesive-frictional shaft force, Fcs, acts at angle S to the normal.

The two cohesive-frictional boundary forces are governed by the same boundary co-
efficient of earth pressure k,'c .rodified iii accordance with equation 2.1.2.) and the forces are
distributed in a way which diverges slightly from a uniform manner. The cohesive-frictional
shaft force is governed by the shaft coefficient of earth pressure, kcsof known value and the
force is uniformly distributed. Including these forces in the equations of horizontal, vertical
and rotational equilibrium, the complete relationships are:

F1,t cost - FW sin(0- ) Fc 1 sin(0-0

F),cos8 + Fcs cos 8 + C2 cos-Ci sin(- ..... 2.3.4.
Fy 2 cos(O -0 - Fy. sin + Fc2 cos(0 - 0 1 - Vc1 sin -

Wi + Fys sinO + Fcs sinS + Cs + C1 cos () C-2 sin . ...... 2.3.5.

V'l d I Fytd 3  F'y2 d4 + F3nds + Cjd- Fords - 1 2 d9 + Fcsdio 0 ...... 2.3.6.
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For this general case, there are four unknowns-the weight-frictional and cohesive-
frictional boundary coefficients of earth pressure, the boundary exponent and the slope angle.
These depend on three further input parameters, the cohesive-frictional shaft coefficient of
earth pressure, the cohesion to weight ratio and the adhesion to weight ratio, in addition to
those already listed for a cohesionless material. The parametric complexity may be greatly
simplified by considering an unsupported foundation, It avoids the problem of assessing
independent coefficients of earth pressure for the weight-frictional and cohesive-frictional
shaft forces and it allows the iateraction between the remaining variable to be presented more
simply in graphical form.

1
One difficulty remains. In order to determine the four unknowns, a fourth equation must

be developed to relate the two boundary coefficients. Alternatively, three of the unknowns may
be obtained in terms of the slope angle and the final solution minimised with respect to .
The latter course was rejected because of the excessive amount of computation which would
be required. The following relationship is adopted to relate the two boundary coefficients:

k0c = (k 0 7 )M .... 2.3.7.

This relationship is correct for the surface case and has, therefore, some theoretical basis.
When the penetration ratio is greater than zero, the relationship becomes more of an empirical
weighting factor because the two coefficients are dependent on the cohesion to 'eight ratio.
It is shown in the appendix that k6c : 1 for a cohesive soil without weight. Hence, the
greatest source of error in the value of weight-frictional boundary coefficient occurs in strong
cohesive soils where its influence is minimal. Similarly, the greatest source of error in the
value of the cohesive-frictional boundary coefficient occurs when the cohesion is small, so
that this basis of the analysis does not represent an excessive approximation.

The value of the slope angle, determined from the solution of equation 2.3.4. to
2.3.7. inclusive, fixes the shape of the failure geometry. The soil weight and the soil
boundary forces may be dztermined as shown in the appendix. The weight-frictional,
cohesive-frictional and cohesive forces on the plane BL) are ignored in the calculation of
the resultant forces because they are internal soil forces. Thus the resultant weight-
frictional force acting at 0 to the normal of the wedge boundary, BC, is dependent on the
weight of the soil within the failure zone, BCDEG, and on the weight-frictional forces act-
ing on the boundary, CDE. Similarly the resultant cohesive-frictional force acting at to the

normal cf the wedge boundary, BC, is dependent on the cohesive-frictional forces and the
cohesive forces acting along the side of the wedge, BC. The distribution of the resultant
forces is in accordance with equation 2.1.1.

The weight-frictional and cohesive-frictional forces along the spiral boundary CD, are
difficult to determine. As these forces pass through the pole of the spiral they may be
eliminated from the calculation by taking moments about that point. The resultant forces are
given by the expressions;

F- (W1.d + W.d2  .F.1.d3)d 6  2.3.8.

F (C.d 7  F 1 d + M)/d 11  ..... 239
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Where the foundation shaft is supported additional terms must be added to the
numerators of equations 2.3.8. and 2.3.9. (c.f. Appendix A).

Resolving, vertically, forces F , Fc and the 'adhesion' force, C3 (all of which act
on the two boundaries of the wedge, AB and BC) and considering the weight of the wedge,
ABC, the resultant penetration resistance of the foundation is obtained:

F lbin 1  = 2F, cos('p- 0)- !TB 2 tan k + 2Fc cos('p- 0) + 2C3 sinq
..... 2.3.10.

This expression can be written in the form of a two part additive equation:

p lbin-2  i 'YBN 7  + cNc ..... 2.3.11.

where:

NY = 2Fy cos (,,i' - 0)/0- 2-3 2 ) - tan ..... 2.3.12.

Nc  = 2[c cos ('P- 0) + C3 sin 23(c.) . 13.

The dimensionless factors, Ny and Nc, are dependent on 0, the penetration and
cohesion to weight ratios. The implication of the two ratios is derived from the equilibrium
of the plane shear zone, and for a buried footing there is no surcharge term. Any real
surcharge on the soil surface can be considered separately.

When the foundation shaft is supported, equation 2.3.11. represents the base
penetration resistance and the dimensionless factors are furtl:er dependent on the shaft
parameters. The total penetration resistance is the summration of the base penetration
resistance and the surface traction en the founda-ion shaft.

2.4. Computer Programme

The computer programme is divided into three sections, namely for a cohesionless
soil, a cohesive soil without weight and a cohesive soil with weight. Additional procedures
am required for certain individual cases such as when either 0, or the sinkage or the slope
angle is zero. The complete block diagram is shown in Fig 2.4.1.

The soil parameters (0, Y, c), the soil structure parameters k , ca, k-ls, kcs) and
the structure parameters (B, z) are stated on the input data and are thereafter available
throughout the programme.

The failure geometry is determined first. The three transcendental eluations of
equilibrium, which are functions of the boundary coefficient, the boundary exponent and the
slope angle are solved by substitution. The range of the slope a,;Pge -(45-0/2) < 6 < 0 is
divided into an arbitrary number of 20 steps. For each value of the slope angle the value of
the boundary coefficient, the boundary exponent and the difference or error between the
L.I.S. and R.ll.S. of the equation of rotational equilibrium are detennined. When two values
of the slop4angle have been selected such that the error is zero within the interval, the
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correct solution for the slope angle is obtained by an iteratiye process. The range is
bisected and, after each cycle, the section not containing the solution is discarded until the
final answer is achieved with a prescribed accuracy of 0.5 x 10 "6 after about twenty iterations

In the case of a cohesive soil with weight the same procedure is used to determine the
value of the boundary exponent by substitution for each value of the slope angle. This
additional complexity is not required for the limiting values of the cohesion to weiglht rati,.

Once the failure geometry has been determined, the final calculation of the soil forces
and the penetration resistance is straightforward. No minimising techniques are included in
the final form of the programme. However, provision was made in earlier worl' for investit,7a tint
the effect of unrestrained spiral pole and of a variable wedge angle on the penetration
resistance using simplex1 2 (c.f. Section 5.).

2.5. Computed Results for a Dry Friction Mterial with Weight

The dimensionless N factors for three values of the shaft coefficient of earth
pressune are shown in Fig-, .5.1. - 2.5.3. The N7y factor for each value of the shaft co-
efficient is completely represented by two families of curves, one for the perfectly smooth
shaft interface ( F ) and the other for a perfectly rough shaft interface (8 0). The data in
Fig 2.5.1. is included because the value of unity is commonly selected for the shaft co-
efficient to provide a rapid solution to practical problems. The additional data in [i!s 2.5.2.
and 2.5.3. provide the necessary interpolation material for intermediate values of the shaft
coefficient.

The presence of interface friction is shown to increase the base penetration resistance
of the foundation in proportion to the downward thrust acting on the radial boundary of the zone
of shearing flow. The magnitude of this effect is also dependent on the shaft coefficient which
may take any value between the coefficient of active earth pressure, ka, and the coefficient of
passive earth pressure kp. In practice, however, it is statically impossible to obtain a solu-
tion for a perfectly rough interface using the maximum value of the shaft coefficient because
soil failure would occur by lateral compression instead of Iv vertical compression. Ilence, the
shaft coefficient was -estricted in value to two-thirds of that for the coefficient of passive
earth pressure. Increasing the value of the shaft coefficient up to this limit increases the base
peneLration resistance. For the smooth shaft interface, however, increasing the value of the
shaft coefficient results in a decrease in the base penetration resistance. This occ Irs because
the hor zontal shaft force generates a less than hydrostatic stress distribution on the
boundaries of the plane shear zone and effectively increases -he anti-clockwise moment of the
boundary force, F-y . f'his condition would not normally be achieved because it is unlikely
that the interface friction would be zero except when the shaft coefficient was at its minimum
value.

The rupture distance for the three values of the shaft coefficient are shown un
Figs 2.5.4. to 2.5.6. As the rupture distance is proportional to the breadth of the footing,
the dimensionless ration is f/B where f is the horizontal distance between the edge of tie
foundation shaft and the point at which the failure plane breaks out at the soil surface. 'I he
effect of increasing either the angle of interface friction or the shaft coefficient is to increase
the rupture dis,ance because it depresses the slope angle of the radial boundary. Vihen the
shaft is smooth, the failure geometry tends towards the statically correct stress field for
the limiting condition in which full passive earth pressure is developed on the shaft.
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2.6. Computed Results for a Frictional-Cohesive Material without ,eight

The values of Nc for a weightless soil are shown in Fig 2.5.7. In the absence of
weight, the shear bulb can be formed around the base of the foundation. Thus, the bearing
capacity reaches a constant value which is independent of any further sinkage. This explains
why the curves for NC have a rather unusual form.

The rupture distances fall to zero wl,.v tie shear bulb is fully formed (Fig 2.5.8.).
Thereafter, the rupture distance f is taken as the vertical distance between the base of the
footing and the point at which the boundary of the shear bulb breaks into the vertical shaft of
the foundation.

2.7. Computed Results for a Frictioi;al-Cohesive Material with \eight

The Ny factors, Nc factors and rupture distances for the intermediate c/TB ratios
are presented for three different shaft conditions. The relevant dat, for the unsupported shaft
are shown in Figs 2.7.1. to .. 7.3.; thos for a ierfectly routh shaft (0 - ca 0) are
presented in Figs 2.7.4. to 2.7.6. and those for a perfectly rough .haft (8 0, ca c) are
given in Figs 2.7.7. to 2.7.9. The calculation of the dimensionlss groups for the foundation
with smooth and rough shafts wen- 'ased on an arbitrarily chosen value of the shaft coefficients
kys and kcs of unity.

The N-y factors follow the expected pattern. For the smooth shaft, the curves for
c/YB = 0.1 are very simiia, to those for c,/-B = 0, with the curves for the unsupported
shaft and thc rough shaft lower and hiher, respectivel'.'. The general effect of increasing the
c/Y'13 ratio is to incease the value of tle ,N.,, factor autil such time as equilibrium can no
longer be achieved, and the curves tend very rapidly to zero.

The Nc factors show comparable trends. For the unsupported shaft the curves for
c/'YB 100 ate very similar to thosc for c,;-B - m. As the c.'2Bt ratio decreases for all
shaft conditions, the curves for the Nc factors exhibit either an iniial reduction in gradient
or a negative gradient with increasing penetration ratio. This becomes more pronounced at
the higher values of 0. Although this effect inay be explained in the case of the unsupported
foundation shaft as the negative cohesive force required to replace the lateral support of the
shaft, the continued presence of the phcnomenon shen the shaft is supported w ould appear to
be due to the inflexible coupling beLween the weight-frictional and cohesive-frictional
boundary coefficients.

The variation of the rupture distances for the intermediate c,",13 ratios is a reflection
of the changes in N factors with a gradual reduction beteen the limits of those for a cohesion-
less soil and those for a weightless soil when the shaft is unsupported. More significant
cLanges occur for the different shaft conditions, The influence of shaft support, which is
augmented by the presence of shaft traction is to increase the rupture distance by depressing
the slope angle of the radial boundary of the zone of shearing flew.

V.
2.8. Interpolation

Since 0 is represented by a family of curves increasing in steps of 50, the main
interpo.ation is required to cover the N factors at intermediate values of 0. Interpolation is
also required for the influence of the shaft pa'ameters cach of which is accounted for at only

ii
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a few specified values. Interpolation hias not been attempted for the data presented in
section 2.7. because of the larger number of variables- and because of the complexity of the 9

interaction bets~een the various parameters.I

For any given penetration ratio, the variation of N(My or Nc) with 0 can be
expressed with considerable accuracy by:

U e vLag 02.!

whecre it and v are constants dependent on the penetration ratio. For small values of (3 radian;,
tan 0 (30 (the error of such an approximation being only 0.2% V fo,- (3 59.~ Hence, inl the
50) intervals -it follows that:

Since the ordinates in the N factor graphs are logarithinic scales, a linear interpol:i-
Lions bet%%een the 50 curves yields intermediate values of N to a high degree of aceu;,icv. '

intormediate values of the rupture distance may be obtained in a similar manner.

F'or the c., Ic ilation of the N), factors at intermediate values of S, the angle of inter-

fit e frictien is con side red as a fraction of the angle of internal friction and tis ratio vrr
from i.cm for a smoo~h shaft to unity for a perfectl y rough one. The variation of the
factor '4th th,- 8/03 ratio is substantially linear (Fig 2.8.1.). The following rclationslliijs
canl If. be established:

Nyb Ny ...../( 2.8.i.

wh-re Nyb, is the requiied value of N~y and N.~ and N7 are the corresponding values of
Ny at 8 ,respectively. A similar foia of equation 2.9.3. may be derixed loi the inter-
mediate values of the. f/ I ratic which e!xhibit the same trend with'respect to thle 87(3 ratio
(Fig 2.8.2.).

The N-y factor is also shown to exhibit a linear relationship with vairiati',n of the
sun ft (,I) fic-i it .tciat the lower va lucs of V3 which are not directly app1 cabi. to a,
cohesionless soil (Fig. 2.8.3.). The form of the interpolation equation is identical to that fol.
tht. 8/ ratio.

N7 . 1  y(k k )Ak1  -k)...

whelp N-p.. 1, ricquirr(I value or N-y and N-y, and N-y1, aru th Waspondi-if vaIucs of N
fir [the iniliulri,uiti and Irljxinitum value.s of th Ahaft ( flicieilt of -atih pi(-ssur( . 'I Ili. i . Ala(
~i,il i le to tOe f//H riao (Fig 2 .8, Y)
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The application of the interpolation procedures is presented in some detail for the

following soil and structural properties.

Soil Properties: 0 40.5 .7 0.06 lb in 3

Soil-structure interface variables: 8 = 320, ky 1.23

Structural parameters: 13 - 2 i, z = 6 in

The relevant values of N.. factor may be obtained by three successive interpolation

for k^,,, 8 and lastly for 0. Interpolation for the sha,. coefficient must be considered first
because the limitirng values of the shaft coefficient are not the same for the rough and smooth
shaft conditions. Improved accuracy can also be achieved by interpolating for a shaft co-
efficient of 1.23 between the value of unity and the upper limiting value rather than between
the value of the coefficient of active earth pressure and the upper limiting value. The eight
initial values of N), are obtained from Figs 2.5.1. and 2.5.3. and listed in Table 1. together
with the interpolated N/ values at each successive step.

TABLE I

INTIRPOLATED NY FAC'IOflS

Initial Values Interpolated Values1 * ..

( k-/s N NN. N
(kys 2 1.23) ( 1.23) (ky = 1.23)

(i : 32) (8 2 32)

40 0 1.0 630) ) 6 21 )

40 0.4.598 50 .

I I)i 690 )
40 40 1.0 700)1 ) )

710 )
40 40 2.2 755)

I I )745
45 0 1.0 1380)

I 1370
45 0 5.829 1180) ) )

I 149
45 45 1.0 1530 1559

45 45 3.0 1740)

The dife'rcincr between th. int-rpnlated N-_ factor of 745 and the computed N7 ftictor
of 736 represents an error of approximately 1



One of the problems encountered in predicting the oenetration resistance for a footing
is that the shaft parameters are indeterminate, in the absence of any vertical restraint, the
sand falls into the shaft and forms a vertical sand to sand barrier along the axis of the footing.
As the sand in this region is completely disturbed, it muso be at the minimum density. It may
be assumed, therefore, that the material is close to the active state. The value of the angle
of interface friction probably lies between zero and the value of 0 at minimum density.
Similarly, the value of the shaft coefficient of earth pressure is probably between the active
value and unity.

It is proposed, therefore, that adequate accuracy may be achieved from the N7 values
for a shaft coefficient of unity interpolated for the value of the angle of interface friction equal
to the value of 0 at minimum density.

2.9. 1 -herent Errors

Some penalty must be paid in fulfilling the requirements of rotational equilibrium. This
penalty, resulting in some inherent errors in the calculation, may be assessed from the varia-
tion of the values of the coefficients of earth pressure and the stress distribution along the
sides of the wedge and along the plane shear zone boundaries. For simplicity, the errors for a
cohesionless soil and for a cohesive soil are analysed sequentially.

From the initial assumption that the wedge boundary is straight, it is logical to adopt
the hydrostatic distribution for the normal stresses dependent on the weight of the displaced
material. As sinkage increases, the centre of pressure for the weight-frictional component
rapidly moves towards the mnd-point of the wedge boundary (Fig 2.9.1.). The effective move-
ment of the centre of pressure is exhibited in the Ny curves whose gradient increases with
pentation ratio. The assumed stress distribution on the wedge boundary suffers from two
known sources of error, particularly at the deeper sinkages. First, the material has inherent
frictional properties, whereas hydrostatics is applicable to frictionless media. Secondly, tie
stress distribution assumed for the wedge boundary differs from that for the pair of failure
planes. In both cases, however, the error is minimised because the total length of the wedge
boundary is small in relation to the total depth at which the discrepancies between the streas
distributions become significant.

The same hydrostatic distribution is used for the weighl-frictio,,al stresses on tic
foundation shaft. This seems adequately justified by the experimental data 37,50 on the vori,-
tion of skin resistance with foundation depth up to a penetration ratio of 10 in compact soil.

Using a hydrostatic distribution on the shaft makes it impossible to use the same
distribution on the two failure boundaries of the plane shear zone unless 0 0. The introduc-
tion of an exponent to vary the pressure distribution along these two boundaries satisfies the
equations of equilibrium. However, the curved distribution could not occur along a straight
failure boundary and it is reasonable to assume that this failure geometry is an approximation
to the curved boundarie.s hown in Fig 2 .2 .4a.

The rather nebu;,,us errors involved in the determination of the boundary conditions for
the plane shear zone are best assessed from a study of the calculated values of the boundary
coefficient, the boundary exponent and the slope angle, and an uuiderstanding of the complex
mechanism for achieving equilibrium. The respective values of these parameters over a range
of 0 are plotted for an aruitrary value of the shaft coefficient of unity when the shaft is
peufectly smooth and perfectly rough (Figs 2.9.2. to 2.9.5.). The equilibriumn mechanism may
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be considered in two parts: first, for a constant slope angle and varying pressure distribution,

and secondly for the opposite case. Taking a specific value of the penetration ratio, the
shaft force is constant for any given set of shaft parameters. In the first case, the magnitude and
and direction of the ferce due to the internal weight of the soil mass remain constant and the
directions of the boundary formes are defined by the slope angle. Under these restraints, the

magnitudes and lines of action of the boundary forces are also defined. They may be achieved
by either increasing the value of the boundary coefficient and decreasing the value of the
exponent or vice versa. The stress distribution for the fonner case is more uniform and that
for the la'tter increases rapidly with depth. In general terms, the uniform distribution applies to
a smooth shaft and other to a rough shaft. In the second case, the slope angle not only
controls the direction of the boundary forces but also the internal weight of the plane shear
zone and its centre of gravity. Depressing the slope angle causes the boundary forces to move
towards the intersection of the planes and alters the relative lengths of the two boundaries.
This, in turn, increases the internal veight of the zone and chan,,es the position of the centre
of gravity such that the stresses on the outer plane boundarv are increased. Basically,
depression of the slope angle provides a larger horizontal component of the wei ,ht-frictional
forces acting on the outer boundary of the plane shear zone and explains why this process is
involved when full passive pressure is assumed to act on a perfectly smooth shaft.

In soils with cohesion, the boundary coefficient and exponent additionally control (in
modified form) the divergence of the cohesive-frictional stress distribution on the plane shear
zone boundaries from that described as uniform along the shaft and wedge boundaries so that
equilibrium conditions may be satisfied. The variation of both the boundary coefficient and
exponent with the penetration ratio is shown in Figs 2.9.6. and 2.9.7. for various shaft
conditions and c/YB ratios. The effect of increasing: the c."1A ratio is to reduce the value of
the boundary coefficient and to inctease the value of the exponent. For both the unsupported
shaft and the smooth shaft, the value of the coefficient tends towards unit'. and that of the
exponent towards zero. In the case of the rough shaft, the equilibrium condition is more
difficult to achieve because of the shaft traction which is generated by the adhesive forces in
addition to the 'vertical' components of the frictional forces on rite shaft. Tue large shift in
stress distribution on the boundaries of the plane shear zone may be achieved only by high
values of tle exponent which in turn governs low values of th coefficient. This expiains why
equilibrium was not achieved when the cbbI ratio exceeds unity.

There is no rigorous meithod of evaluatin 4, the errors for the approximate boundary
conditions. In a negative sense, the variation in the boun]3ry parameters from those accepted
for zero sinkage, indicate the undisclosed errors of earlier theories in which the combination
of hydrostatic and uniform stress distributions is adopted. Moreover, the variation indicates
inconsistencies in the present theory because the equilibrium of the radial shear zone is still
not consideied. A suitable extension of the existing stress distribution on the plane boundaries
to the spiral boundary would enable the only retnaining unkinown forces ir, the system to be
determined. The equation of equililrium for the radial shoar zone could th)en ;e calculated and
used to assess the existing errors. Th,ese cirors couid be eliiniied by chanf'inp the spiral
boundary to some form of ellipse whose shap- could lk detenniied lv the angle of dilation.
The adoption of a variable angle of dilatit n 1,)'lrn it variation in denen it to l,e reflortrd
in the shape of the failure boundary. "Ilese iinproveinetts, however, could be achieved only
at the expense of additional theoretical canpl'xit .



2.10. Comparison wit h Other Theories

1"he theory of penetration resistance is compared with existing theories of hearing
capacity for oth a foundation resting on the soil surface and for a hnried foundation in
cohesionless and in cohesive soils.

Th'e values of the surface bearing factor, N, , are shown in Fig 2.10.1. 'ersaghi's
and M.eyeriof's N factors were computed by the author; the former are exactly the same as
those published by Lotkin 3 but the latter differ slightly from those published in reference 24,
particularly for 0 - 50, 100, 15 , and 5 0 '. 4alias' values 25 are derived with the aid of ,is
graphs for the ratio r, and Mizuno's values5 4 are obtained from his published r'aphs.
Published values are used to construct the curves of Caquot and "erisel's5 5 and lundgren
and Nlortensen' s 1 8 N-y factors. As the current theory is based on the rnaxi'nurn size of the
wedge with no minimising procedu-res, it is not surprising that the NT values tend to be
higher than most other theories.

The comparison at shallow depths of penetration is complicated by the fact that none
of the bearing capacity theories consider shaft support in a logical Nay'. Terzaghi's ihreorv of
surface hearing capacity may not he extrapolated beyond a penetration ratio of 1 because the
soil above the base of the foundation is considered as a pure surcharge with no boundary
stresses. Ballas' theory is restricted to a penetration ratio of 1.5 because further extension
would lead to an impossible figure of rupture when shaft support is ignored. Meyerhof
considers shaft support as a surcharge effect for a figure of rupture dissimilar to that for the
determination of the bearing capacity due to the internal weight of the mass of soil al failuire.

The dimensionless graphs p/,"YB and p/c are used in Figs 2.10.2. and 2.10.3 to
accoant for the combined effects of N?" Ng and N-y, N, N o respectively. The excessively

small scale of \leyerhof's published graphs1 6 of the combiaed factors in the relevant ranp-e
precludes a direct comparison with his work. For expediency, Wills results 2 , for a
restrained version of -Meyerhof's theory, are presented for in 1. From a few test computa-
tions of Meyerhof's theory, it would appear that the effect of restraint on the pole position is
to increase the N)zj factor from a value less than the current theory to a value greater than
the current theory when the shaft coefficient of earth pressure is unity and the interface
friction is zero. (The N1 q factor is not affected by restraint).

Although direct equivalence of shaft conditions is not possible in the comparison, the
present theoretical curve exhibits a marked similarity to the existing bearing capacities
theories adopting some form of spiral failure boundary. The divergence of Ballas' results
from the general trend is largely due to the use of a failure boundary which does not appear
to have experimental validity.
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3. APPARATUS, SOIL AND EXPERIMENTAL PROCEDURE

The experimental verification of a pressure penetration theory requires apparatus for
the measurement of the forces on a rigid model foundation as it is pushed vertically into tile
soil. The evaluation of two dimensional soil movement necessitates the use of a glass-sided
tank, and in order to cover the complete soil range, tests must be conducted in at least three
soils, a cohesionless soil, one with cohesion and friction and a frictionless material. Each
soil must be processed to a state which can be readily reproduced for a number of experiments,
and the soil parameters must be obtained for these precise conditions. Finally, the interface
effects due to model testing in a confined space, the influence of the glass interfaces and
sources of error incurred by the photographic analysis of the failure geometry must be
investigated.

3.1. The Pressure Penetration Apparatus

Pressure penetration experiments were conducted on a large penetrometer developed by
U.S.A.T.A C. (Fig 3.1.1.). This was used in order to obtain the structural rigidity necessary
for the development of symmetrical soil failure. The penetration device is mounted on the base
of a vertical shaft running through linear bearings. This prevents any lateral movement of the .
shaft. Although the shaft is not completely restrained in rotational movement, it did not appear
to occur during the tests. The vertical shaft movement of approximately 42 in is controlled
by two double acting hydraulic cylinders. The penetration speed may be varied from 12-60 in min-'
by means of a variable flow hydraulic control unit.

A glass sided soil tank was mounted on a stand to simplify the photographic procedures.
The maximum size of the tank was limited by the weight which could be conveniently man-
handled, and by the volume of soil which would be readily processed between experians. The
internal dimensions of the tank were 45 in long, 35 in high and 6 in wide and it contained
approximately 500 lb of soil to a total depth of 30 in. As the extent of failure is a function of 0,
provision was made for varying the quantity of soil by using two vertical compression plates
which could be moved inwards to give any desired tank volume.

The base and ends of the tank were of 6 in x 2 in channel. A in thick 'Plexiglass'
sheet was used to form the front of the tank and a Ai in thick sheet of plywood formed the back.
The ends were braced along the length of the tank and the sides across the widtf: of the tank
by a series of removable cross bars (Fig 3.1.2.). (It was subsequently found that the 2 in x in
crossbars had to be strengthened by a factor of 3 to minimise elastic deformation of the cross-
bars during tests in very compact materials). On the inside faces of the 'Plexiglass' front and
t6e wooden back were placed two sheets of 1/8 in thick window glass to form the soil glass
interfaces. The inner sheets were used to reduce replacement costs; these were expendable
when scoring occurred. For a free flowing material such as dry sand, the replacement of the
glass was only possible when the box was empty. For self supporting cohesive materials, the
glass could be replaced without emptying the soil by gently moving the cross bars after
processing.

The penetration device was designed to measure both the base resistance and the shaft
forces. The outer shell of the penetration device was a channel section rieasurina 30 in Icnn,
6 in deep and 174 in widp (Fig 3.1.3.). '1his housed the loading shaft which had a 60001]
integral ring dynamometer at the lower end to measure the base iesistanr'(i. Ihie horizontal and
vertical side plate loads were transmitted to five cantilevers on the loading shaft tlhRugh
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spherical rod end bearings and small chain links. Any lateral movement of the side plate was
constrained by ball bearings recessed in grooves in the strengthening bars on the side plate
and impinging on the channel flanges. 1By measuring the horizontal loads with two pairs of
cantilevers, each %ith a design load of 100 lb, the total thrust and its point of application
could be determined. The vertical thrust was measured by a single cantilever with a design
load of 300 lb.

j

The base resistance dynamometer was calibrat-d against a standard load cell
(Fig 3.1 .4.1. A linear relationship between strain rate and load was obtained with no
hysteresis effects.

The side plate cantilevers were calibrated by dead weights. As the individual calibra-
tions of the four cantilevers measuring the horizentnh thrust were very uniform, the two si:nais
from the two lower cantilevers, and those from the two upper cantilevers were added
electrically to give only two outputs instead of four. On assembling the complete side plate,
however, problems were experienced with the calibration of the cantilevers. It was anticipatcd
that some interaction would occur between the horizontal and vertical force measuring units,
but unforunatels this was combined with excessive hysteresis. This was attributed to sore,
major misalignments in the assembly of the cantilever linkage. Although some modification
did reduce the friction, there was insufficient time to redesign and manufacture a linkag:.e to
eliminate the problem and the existing rig had to be used for the current series of exlerimtunts.
Owing to these factors, a comprehensive series of calibrations were conducted on the side
plate. The penetration device was mounted in a Hartford chuck and measurcinents were made
for a series of weights placed at different points along the length of the side plate and thr-.
different angles of the side plate- horizontal, 450 and vertical-were also used to assess the
interaction of combined loading (Fig 3.1.5.).

The cantilever calibration curves are shown in Figs 3.1.6. to 3.1.8. The results for
horizontal loading do not exhibit too much hysteresis, and by combining the upper and lower
calibration curves, the resultan, calibration curve is identical and indepcn'dent of the position
of the load (Fig 3.1.7.), the interaction obtained in horizontal loading was found to be
relatively constant at 9C of the horizontal load (Fig 3.1.8.). This high figure is the result of
minimising hysteresis by increasing the linkage clearances which then introduced considera i,l,
slack. An angular movement of only - 4' from the vertical could account for this inte;c-tiun.
This slack also caused 'weight transfer' to occur between the upper and lower cantilevers w; v,w
when the side plate was tested at an angle to the horizontal. It was therefore decided that
the total force calibrations could be used but that the location of the point of application of
the total force was subject to an excessive degree of error The horizontal component of the
force applied at 450 was identical to that found for horizontal loading; the vertical conq:),,nent
was some 8, higher which agrees well with the interaction figure obtained earlier (Fig 3.1.9.).

The base resistance was recorded against sinkage on an XY plotter and the three
force measurements on the side plate were also recorded against sinkage on a multi-pen
recorder. The two sinkage measurements were each obtained from half bridge incorporating a
rotary potentiometer which was forced to rotate when penetration occurred.

Two further refinements were made to the basic rig. Rough or smooth side plates and
base plates could be fitted to investigate the effect of interface friction. The aspect ratioof
the penetration device may be increased from 3:1 to 12:1 by attaching r wooden block on each
side of the central measuring unit (Fig 3.1.10). This was used to detertninc the effect of
the glass interfaces.
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Some of the experimental results used in this report were obtained from an earlier
series of tests which were conducted on a different apparatus using footings without side-
walls. This apparatus is fully described in reference 40 together with the photographic
techniques and the methods employed to reduce the effect of the glass interfaces.

3.2 Soil Preparation and Properties

Tests were conducted in a roller model soil, two dry sands (Ohio and Leighton Buzzard),
damp sand and clay. The rollers were processed manu;lly by rearranging their positions until
any visible failure lines from the previous tests had b en remcved and some degree of compac-
tion had been achieved throughout the mass. Care was also taken to ensure that completely
uniform packing did not occur.

The dry sand was first completely cultivated by emptying and refilling the tank, then
compacted by an electro-magnetic vibrator until maximum density was achieved and the
surface levelled. In the larger tank, a vibrating probe was also used to ensure even compac-
tion.

The loose damp sand was spread evenly in 2 in layers and compacted by means of a
falling weight compactor to maximum density. The surface of each successive layer was
disturbed before the addition of fresh material and final layer levelled to a set depth by a

scraper running along the sides of the tank.

Whereas the tank was completely emptied of sand between each test, the clay was not
disturbed. It was processed bv filling in the cavity left by the footing and knecading 'the mass

to obliterate any rupture lines. The surface was levelled to a set depth using the same volume
of clay zs a check for the presence of any air pockets.

The diameters of the wooden rollers were ]/8 in and % in. At a mean density of
0.02 lb/in"- the angle of internal friction was 280.

The Ohio sand contained rounded particles with a good grain size distribution
(Fig 3.2.1.). The angle of internal friction was 40.50 in a density of 0.065 lb in3 . The anle
of repose %%As 320 at a minin:m density of 0.59 lb in"3 .

The Leighton Buzzard sand was a sieved washed sand cgain with rounded particles
but with a very uniform large grain size laying between 12 mesh (0.0553 in) and 24 mesh
(0.0236). At a maximun density cf 0.0605 lb in 3 the angle of internal friction was 45.5°. .-\t
the minimum density of 0.054 lb in-', 0 was 320. Using these two values of the density, the
maximum dilation is 10%.

The damp sand was a fine, washed 'plastering' sand with sharp grains and had a
moisture content of 4.53%. At a maximum density of 0.0672 lb in"3 the soil properties were
(Y= 43.1 and c = 0.3 lb in "3 . At minimum density of 0.047 1, in "3 , 0 - 33' and
c 0.2 lb in "2 .

The clay had a cohesion of 1.8 lb in "2 and a negligible friction angle of between 2.5'
and 40. The mbisture content was 32.8% (ID.B.) and the density 0.0623 lbi "r 3 .
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4. ANALYSIS OF RESULTS

The measu-;red pres sures as a function of the penetration ratio gave good agreeinewt
with the theory Mil l wimateria is. 1The photographs showinag the failure boundaries in the roller
model were almost identical with the theory and those in dry and damp sand were cucotirla iig
inii t at they w eie of the samec fornn as [lie predicted boundaries. U nfort unaw tly, thle ba se ic

was tent11h flaitteot~ '11d 11te overall width of failture in sand was only about hllf as., bitt ais tIll
theory pi'd jets.. In the ci a), thle fa ilure vwas niarked ly different to that predicted.

4.1 I 1 nctratton Iailhim in the Boller Model

[he theoretical determination of the base resistance and the failure geomretry dept-ites
on thet ccefficic ii of earth pressure and the angle of interface friction oitt the shtaft whlich "%ero
foun d by e xperimntt to be 0.45 anid 12"0 res pect ivelyv. The experimental Ix nemtrtion
resistance together wit Ii the predicted curve for k- 5 0.45 and S -12o js shown in
Fig 411

Ithe failure geomnetry is shown in a series of photographs of a 2 in tiAsaid o;i
forundation dri'.en progressively inito the roller riodel fromt thIe surface to a vetia tion rati-
of 10 WIigs 4.1 .2 a. to 4.1 .2j.). Mobilisation of the material did not alwvays occur on bt
sides of the foittdation shiaft at the same instant even thouhi great cajre was taken to cii itif
that [lie pen' tration device was vertical. A part icu'larly g ood exairpie of s vnmtrica I fa l tie
s show% it in I- ig 4.1 .2i . After i! number of tests', tilte bou nda. othfalti neasC c

1is 1).b still photograpliy ([Fig 3.1.1 .). T1his wvas made possible by the iiieatn
sucefssi xe penetrations wvith in thec mobil ised miaterial. H1ollers were carrie-d (lot i in thfic
attache-d to tlie base ( of tilte footing. (Figts 4.1.3.). The base, wedge angle vaited bc j7.
and 00" heiteat h a rough footing. H owever, it is not poss ib Ic to lay too nmuch t res on 1I
figures liecatise themt was a tendency for the rollers to be arranged in the ideal imei Fw,
[ion by displaci the larger rollers (F'ig 4.1.4.). This results in a base viedcc ant.-: ot
w~hich does not necessarily reflect ont the actual value of 0 or the correct stress fe'~ VI( n.
both sizes of rollers are present.

A comiparison between the experimrental and tlteorptical fa)iliire geomeitry shoii
Fig 4.1.6. for three penetration ratios. Considering the experimlental variationI e
the relationishtips are very satisfac tory. At the largest penetration ratio, the plhoto- lh of 1
roller movement (Fig 4.1.2i.) clearly shows two roller streams, one moving in, a dire'ction1
similar to tlhat predicted, and the other moving outwards and upwards followitig the lint- of
least resistance for uniforioly packed rollers. The movement of both streams is larg-ely
dissipated beforie they reach the surface.

4.2 flulitv under Houfh Strip Foundations and Footings in lUry Sand

Preparatory tests with the penetriation device were conducted in a large mnass of v
sand to de!trrine the effect of density on the base resistance and on [lie appearatic'. C;t

rumptutre planes at the "and surface. T he influence is demonstrated b-y the two i' eso IMtte il
ticn rcerds for Ohio Sand (Fig 4.2.1.). In soil at tie ininimuni density the traIce Is a "!llow~h
curve whiich.is the result of localised compaction failure within the soil mass. A~n~ost no

smirfact' upheaval occurred at the li rger pe netration ratios. Whllen tile compress ii Ii t u ffec
eliminated, the experimental pene-trationi resistance is much less uniforn with each, f' NV
peak relt lig to the (devel opmtent of a clearly defined failure boundary. I lie rs u to~in
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represent the continued failure along an existing failure plane. Thus any predicted curve
should pass through the pressure peaks. The theoretical penetration resistance in Fig 4.2,1.
is based on a measured coefficient of earth pressure on the shaft of 1.23 and 8 was assumed
to be equal to 0 at the minimum density of the sand.

The base penetration resistance for a long strip footing (aspect ratio of 6:1) in compact
Leighton Buzzard sand was used as a control test to determine the effect of the glass inter-
face. As the shaft parameters for a footing are indeterminate, the penetration resistance is
predicted in accordance with the assumptions given in Section 2.8. The experimental and
theoretical curves shown in Fig 4.2.2. exhibit a close similarity. The comparison between
these results and those shown in Fig 4.3.2. indicates that two dimensional failure may be
simulated in a glass sided soil tank.

4.3 Failure under Rough Footings in Dry Sand

A series of photographs record the soil movement which was caused by a 2 in wide
sand coated footing driven progressively ;nto dry sand from the surface to a penetration
ratio of 3 (Figs 4 . 3 .1a. to 4.3.1f.). The location of each of the succession of photographs,
together with the theoretical base resistance is shown on the XY plotter record for this
particular experiment (Fig 4.3.2.). Photographs (a) and (b) show the initial development of a
long sharp wedge and sand particle movement -xtending very widely on both sides of the
footing. Photographs (c) and (d) are taken just after the first soil failure and show a much
blunter wedge and smaller zone of moving sand. Photograph (e) again shows a sharpr wedge
and a wider zone. Notice that this coincides with the second pressure peak on the XY plotter
record. This cycle is repeated throughout the test and is accompanied by a general widening
of the failure zone with increasing depth as shown in photograph (fM. The existence and the
variation in the size of the wedge is shown more clearly in photographs taken with the camera
attached to the footing (Figs 4 .3 .3 a. and 4.3.3b.). The maxinum pressure tends to occur
when the wedge is at its sharpest and the peak values correspond well with the theory.

The vaiiaticn in wedge shape and the smaller failure boundaries are attributed to the'
variation in 0 with changes in density. The dilation of the sand due to the first feuting faiiuc
was measured with a planimeter from photographs 4.3.lb. amd 4.3.1d. In both cases the
volume of sand hab increased and corresponds to an 8"- cxpansicn of the sand lyi:ng above
the soil failure Loundary. Photograph.. 4.3.1d. also shows two edges to the surface hetave.
The inner edge corresponds with the intersection between the main failure boundary and tle
surface of the sand. The outer edge is much further out and represents the much large volumre
of sand mobilised in photographs 4 .3 .1a, and 4.3.1b.

As the footing begins to sink, the sand deforms. Since it is originally at its rnaximium
density, it dilates and the value of (0 diminishes. This process tends to spread from the
edges of the footing, and before the complete failure zone develops, the footing is operating
in a sand with 0 = 320 instead of 40'. For such a material, the failure surface is only half
as large. A secondary failure therefore occurs entirely within the soil loosened by the ,initial
penetration of the footing. It is shown in Fig 4.3.4. that the measured failure surfaces
correspond very closely to the theoretical one for 0 320. 'This comparison is based not
on the same penetration ratio for theory and experiment, but on the same position of the %edge
tip. As the original wcdge tip constitutes a pattern of weakness, it tends to remain in its
initial position. The wedge apgle is reduced within the loosened material fy the sinkage of
the footing which is required to produce the first failure.
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With further penetration, the footing nears the original wedge tip and forms a iew s'tu rp
wedge. From this wedge, the soil is mobilised outwards and upwards to start a new cycle of
soil loosening, weakening and failing.

The magnitude of the recorded penetration resistance confirms this explanation. It is
only the peak values of the pressure that equal the theory. In between, the pressure falls
toianis the value appropriate to the lower value of W. There is a tendency for only tilie fir..st
peak to r* achi the predicted vatie and all the subsequent peaks to be lower. This is bldco:;,,
the subsequent failures have previously loosened sand okove the newly generated boundary.

4.4 Failan' indtr Snooth Footings in lry Sand

Plhotographs 4. 4 .1a. to 4.4.1d. are of a lubricated glass footing taken with a canera
rigidly mounted to the footing and show the fixed wedge and, less clearly, the failure zo,'
boundary. The experimental penetration resistance is shown in Fig 4.4.2. The photographs
(and others xdhich were taken) show that the failure zones are of the same maca.itude as t"m:.e
foi th e rough footing and have a wedge behaving in the same cyclic manner. The only
difference is dhat the wedge can disappear altogether and, on occasion, a douin weile ,a -
formed. This latter phenomenom together with the maximum size of the wedge at the sirflt-
arc illustrated in Fig 4.4.3.

The cycle variation of the wedge beneath a rough and smooth footing is shown
diagraminiatically in [-igs 4.4.4a. and 4.4.4b. Note that the tip of the original wedc, restiri-
on the coirpact soil, remains constant throughout one cycle. The minimum size of th' w,.ir
depends on the inobilisation oF shear stresses on the base of the footing. lieneahi a wt,.

footing, the wedge never completely disappears (2nd stage of Fig 4 .1.4 a.). A larger we.:lre
then forms to start a new cycle but it never reaches the maximum size of the wedge trts,'t

during the initial process because the upper half of the new wedge is developing in revioustv
loosened material.

Beneath a smooth fuoting, no shear stresses can be developed and the ,'--iliplue Cycl,
includes two further stages. In some cases, a mere vestige of the wvedge is retained t3rd ,t.
of Fig 4.4.4b.). Finally, the footing may penetrate until it reaches the original curved
boundaries emanating from th, tip to form two planes of weakness at an anle of <,"2 + 1;2
to each other joining at the ( ntre of the base. Thus, they form the inner boundaries if two
wedges such that the soil flows horizontally outwards from the centre of the footine (4th :1t0cce

of Fig 4.4.4b.). Thereafter, the cycle is repeated. The new wedge is almost as large as tite
original because it is being developed in almost totally undisturbed material. This exphiits
why all the peaks in the pressure penetration record are of the same amplitude as the,! fir t
peak and why they occur less frequently than in the record for the rough footing.

There is no theoretical explanation for the cyclic variation of wedge :hape bas;ed un
the assumption of a rigid footing penetrating a homogeneous material. The observed tendency
for assyan-netrical failure after the initial mobilisation of the soil imposes consideradble !aW.-r1
thrust on the wedge and can cause its partial destruction (Fig 4.4.5.). The mode and extetti
of the destruction is then determined by the interface properties along the base of the focitiil:.
In the presence of interface friction, the lateral thrust is imparted to the footi;Ig, Cauqin", it tC
'weave' during penetration. Slices of the wedge are removed by a shearing action until the
base angle reaches the value of 0. At this point, the lateral thrust is eliminated because the
resultant fortes, acting at an angle of 0 to the normal on the sides of the w(-de,, are verticail
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and maximum shear stresses can be developed along the bi se to prevent a further reduction
in the wedge size. The footing must now displace the dense sand beneath the blunt wedge.
Applying the principle of conservation of energy, the sharp wedge is formed when the penetra-
tion pressure for the development cf a new failure boundary throurh the undisturbed soil is
less than that for the blunt wedge. 'lhe proces, is similar for a smooth footing except that
the absence of shear stresses permits the complete disappearance of the wedge without

imposing any lateral thrust on the footing itself.

4.5 Penetration Failure in Damp Sand

Preliminary experiments were carried out to assess th, difference bctween a rough

and smooth footings. No difference in either th"- failure patterns or the pressiies could be

detected. This may well be attributed to the difficulty, of eiiminating so;l to structure
adhesion. The wedge beneath a lubricated glass footin; ( ig 4.5.1.) may be compared with
the wedges for a sand coated base (ig 4 .5.7 a.).

The main experiments were with buried footings at initial penetration ratios of 0, 1,
2 and 3. The foo~i-.g w, a driven until complete failure was observed in each case. The
failure patterns am shown in Fig 4.5.2. to 4.5.5.

Failure always occurred on one side of the footing first, with a relatively sharp wedge
(Figs 4.5.2., 4.5.4a. and 4.5.5a.). Further sinkage was necessary to produce failure on the
other side, and by this time the wedge was smaller (Figs 4.5.3., 4.5.41. and 4.5.5b.). 1he
photographs show the same general patterns as in dry sand. The failure surfacus are of the
correct form but are much smaller than the theory predicts. 'Ile ipredictd and experimeintal
failure patterns are compared for penetration ratios of -) and 2 in Fig 4.5.6.

The development of the wedge beneath a rough footing is illIstrateJ in Fig 4.5.7.
Initially, the theoretical sharply pointed wedge develops bit later there is a tendency to form
a double wedge on which appear the halt sized lill type failure surfaces.

The soil failure seemed to be differeit to that occurrin g in iry snd I;, lure was a
general disturbance throuiout the soil progressing fron! the corncr of the footing. In danr.,
sand, it appeared as if large masses moved bodily. It is clear that large crack, could pen ii'
to separate the various parts of the mobilised sand at jailun, .Vtithermore, the first signs of
failure occurred in the deepest layer, but before they wets fully developed, much smaller
failure surfaces were generated at the mid point of the original w edge and roke to the surface
first.

The successive development of the failure surfaces for a driven !ootng are shown in
Fig. 4.5.8. In this case, there is an obvious tendency for the successive failurer to rise
sharply upwards and coalesce with previous failures, thus producing a ery sm.l rupture
distance.

The foce measurements for both buried and driven footings ,re shown in Fig 4.5.9.
together with the predicted values. Once again, there is good agr:ement conisideiing that the
interface effects were higher in this material. (The adhesiot, and int,-rfiice friction were not
reduced by the lubricant to the same degree as in dry sand.)

Once again, the measured value of $ for the sand in it, dc,:.v state gives the correct
thecietical value for the base rsisting,- but th- fEtill!, !.urfce i: '-jch !,a!ieler tIld
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corresponds to the lower value of 0.' The explanation used for the dry sand does not seem
applicable here. The. photographs do not exhibit much evidence of general dilation throughout
the soil mass. It seems more likely that the frictional resistance was reduced and the cohesion
almost eliminated only along the actual lines of rupture. The problem of soil compressibility
was only overcome at the expense of over-consolidation and the resultant material exhibited
some recovery after deformation. This, combined with the evidence that parts of the soil were
in tension, could yield the observed failure geometry and the rapid reduAion in the penetration
resistance after the clitical point of failure.

A further noteworthy observation was the marked tendency to unilateral soil failure.
Perhaps this situation should be investigated theoretically. It seems possible that an
alternating succession of one sided failures is kinematically feasible and might lead to a
reduced size of failure pattern.

4.6 Penetration Failure in Clay

Entirely different trends were noted in clay. The pressure penetration traces for buried
footings driven from penetration ratios of 0, 1, 2 and 3 were all smooth curves (Fig 4.6.i.).
In each case, the gradient of the curves rapidly reduced to a small constant value after the
footing displacement exceeded a distance equal to the width of the footing. An example of the
total deformation of the soil during this footing displacement is illustrated in the superposed
photograph (Fig 4.6.2.). The magnitude and direction of the actual soil deformations were
obtained from the two images of each grid intersection and presented in a displacement
diagram (Fig 4.6.3.). Note the vertical displacement of the soil together with the complete
absence of any bulging of the unsupported walls of the excavation. It was also found that the
extent of failure increased in proportion to the depth of penetration.

This type of failure was rather unexpected. It was anticipated that the soil, which was
displaced by the passage of the footing, would flow into the excavation and rapidly yield s;ome
constant maximum value for the base resistance independent of depth in accordance with
Jaky's theory8 . Although Jaky's theory is for c/YB = co, it does compare well with the
experimental base resistance for c/YB = 15, but not with the failure geometry. The
observed failure patterns are attributed to two factors, the effect of adhesion and the effect of
weight. First, the failure boundaries shown in Fig 4.6.3. can be reproduced theoretically in
the absence of weight only when full passive earth pressure is acting along the walls of the
excavati6n. Although no side thrust was used in the experiments, a small calculation suffices
to show that the adhesion of the glass interfaces is more than adequate to create the necessary
side thrust for this type of failure. The introduction of gravitational stresses also tends to
increase the size of the zone of mobilised soil. Although some tentative conclusions have be
been drawn, confirmation of failure mechanism in clay depends on the complete elimination of
the adhesion by a suitable interface film which controls the adhesion without also affecting
the cohesion.

4.7 Comparison with Other Experimental Research

The current theory tends to underestimate the surface bearing capacity in sand but to
a lesser 4xtent compared with other theories with the exception of Balla's theory. For example,
Selig and McKee 41 measured an average base resistance of 22.2 lb in"2 using 3 in wide rect-
angular footings with an aspect ratio varying from 5:1 to 7:1. The density of sand was
0.065 lb in"3 and 0 was 'rnind' 410 - tn " the author - and yield a theoretical base
resistance of 19.5 lb in"2.
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Compa~risotis hetwecit drivren or 1i1 rcrd footing! teSt [Sut an-i thr ItIIIOF(tI I %-, Ll'. ,e
is difficult be-cause the- sand fl iiie og 30 tit'e c-a Ity left by ',leI footing pr' sett ifdlterttuftiatc
shaft conditions. An indication. of comparative trends may b4- obtained b,, a-s s ing the va luen
of k .s find to be 1 and 0 respectively in accordaincc with thle reasoning .sto~ted in sct ion

Lebequ C3 9 coniducted driven footing tubts in a poorly 1-iadid, rmuiid gli ii 'id sald at
three different dens itics rangiinc from 125 gm cmt to 1.57 WI; cm; . .Q05j _ 11 io~si
C.0566 1n- - )1 r %,jj~t r. ,- ""' to 38.s th- pro pcrties of ilic sand show, a
markced similarity to the Leighton Buzzard sand used in theP C~lri-eft series of tests, it is
suspected that maximum density was not achieved. Thus, compressibility and dilation effects
ntay be present, and only the results for the dense sand are considered (Fig. 4.7.1.) h
discrepancy betwcen theory and practice is greater near the surface. This may wvell be due to
comnpressiblity, whdich ivould yield a higher expetinmental bearing capacity because conipac-
tiun under the footing increases the density of the sand prior to failure. TIhe improved
correlation with dep~h may be attributed to the fact that the footing penetration rejuired to

cause fa ilu re lu vc-anes less significant in terms of the total penetration depth for the laigur

Thle correlation between the theoretical penetration resistance and the experimental
data obtained by WAills in very comnpact Ohio sand show an entirely opposite effect
(Fig 4.7.2.). Thlere is close ag--reement up to a penetration ratio of 2 and there after the
experimental values incre2ase more rapidly thantLhe predict-] values. Inaccuracies in the
measurement of 0 may well explain this divergence. .. lthou. the penetration testwa
conducted in saitd at a den-ity cf 0t.067 lb in- , the iitia; d-noshv of te triaxial shma; test

sam~s ws 0.59 b i 3 . Esti cnfiningz pressures of tip to 10psi, V ills n!bt iri' C p
whicoias the author obtained 0 -~40.5 in the samlie sand at a density of 0U65 Ilb in-, (C. f.
section 3.2.). Thle values of N-. are extrenielN sensitive to ciesin V. when 0 is laru.
For example, a 10 charipv in 0 from 400 to 410 iticrcased tiec value of V,. by aiiproxin~atlh
20(-Ii. Thiis increase wsould be sufficient to yield a predicted curve alnmost identical v.ith t)he
mean experirnenta! curve throughout its heiioth.

With this geiieral tendency towards theoretical undeicestiria tion, it is ra-.ther suifrus.ini'-
to find 'hat the theory overestima'tes thfe test da ta oljtaii ne! Li 3a rez 37in thi roile r tiolei11
At a penetration ratio of 2 the theoretical value -,29.6 kg c!T) a .,; -s p:oed an average
expeimiental value of 22.5 kg cm -. TIhis tends to indicate that thle model is suspe-ct.

Biarez found that the value of the coefficient of earth pressure k,s, on the rough se
of the foutndation %%as 2.6 for 0 =26' . This is also sur-prisingly high. 'rom fin anal% sis of
skin friction measuretnents on piles, Meyerhof found that k, varied front 0.5 for loose- sand
to 1 for dense sand. Sirnilsr rpsiii-, to thiose of Meyerhof are quoted by Vesic for long rect-
angular foundations.
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I~nI! Iu ntpn of tile thIvni y of jpenctr.ition rusistnce, ancil1lary iflvet-lL('t iolS

'j1r acf c'ane Icty Of a foundaltionl i . frf'!1 imutly derived I)Y taLllti fl01Ohmi 'nt ('f
tdic m'il Ifict I 'o~ -1. C ;) it pc. U V Iif the cu rved boundary cf the, zoie of -obranrng

flow ifs ecrlcd by the" C(IIjill to thu lotgarthiioc.spiral, thle calcuilation is simplif l b'y
taki ng nionielts a bout the( pole, of thle spiral bcause the frictional forces acting oil tile spiral
bwolkdlrx pass thiroui-h the jailc of' the iirnl and may be neglpcted in thle mnonucn' equaitiorn. In

GL r to 0Vernoauel( tile prob)]lmi hit the stirss field composed of radii and lo-garithmlic spitulls is
true( only in the casu of a wvihticss soil, a smaller failure zone wvith a modified shJmp is
achlievc I for a soil with wevif-li by relaxing the constraints on the position of the pole. Tlie
pole does not necessarily lie at thc corner of the footinp, but at some point close to i such
that the restoltanit bea:,ring, capacity factor, NY, is a minimum. As has been described previously,
this view is rejected because thle resulting inconsistencies in the calculation appear to be
greater than the orig-inal problem. -Nevertheless a considerable amount of work was expended in
investigating, the effect of the wandering pole.

If thle poic is restrained to move along the boundary between the plane and radial shear
zones or that line externded (line 0131, Fig 1.4.1a.), thle variation in the value of the resultant
frictional feo-Ce on the contact face, BC, is dependent on the distance, 03, defined as X, whicl
defines thle distance of the pole from the corner of the footing and is taken as positive when the
pole lies outside the failure zone. LotkinS3 published the general shape of the curve satisfy-
ing the equation:-

N7  = f (K)511

The particular curve for 0 30 0 is shown in Fig 5.1.1.

It is observed that thle resultant factor can become infinite when the pole is located at
quite small distance,- fromi the position Of >,min ut which N-y is a minimum. This ij s simrpIy
explained by thle fact that when the pole is located on the line of action of the resultant force,
the moment arm becomes zero. Hlence, the resultant force and N-y tend to infinity. Similarly,
if the pole is located immediately beyond this limiting value of X, the value of Ny tends to
a negative value of infinity, even though the failure geometry is entirely reasonable and the

change in shape is almost imperceptible.

Although the increasing values of Ny for negative values of X are related to increasing

size of the failure zone, the minimumn value of Ny is usually located at a positive value of X.

Hence. the minimum value of N-y is governed, to a large extent, by:-

(a) The point of application of tne resultant force for soil weight on the contact
face or wedge boundary and its direction.

(b) The variation in the extent of failure.

M~ The angle of inclination of the contact face with respect to the horizontal

(d The degree of constraint placed on the location of the pole.

42



As the point of application of the force is normally governed by hydrostatics and the force is
assumed to act at an angle 0 to the normal, the effect of these parameters can be considered
constant. The location of the pole does affect the extent of failure, but the variation is not
systematic - the changes in extent of failure and in values of N7 are considered in more detail
for a fixed pole (cf section 5.2.). The most significant effect on the bearing capacity is
achieved by increasing the backward rake of the contact face (wedge boundary) or by decreas-
ing the angle of inclination of the line along which the pole is restrained. Separately or
jointly, these'changes serve to create greater constraint on the possible positions of the pole
and, hence, increase the minimum value of N-/.

In perspective, then, Ohde originally devised the minimising procedure for retaining
walls for which the calculation was an acceptable way of optimising for the interface proper-
ties along the contact face. Terzaghi increased the constraints on the pole by considering a
backward raked contact face. Ieyerhof relaxed the constraints again by adopting the
unrestrained pole no longer confined to a line, but free to take any position in two dimensional
space. Fortuitously, however, this freedom of movement was largely inhibited and governed by
the same limits determined for the restrained pole i.e. the line of action of the resultant force
effectively halving two dimensional space and an excessively large failure geometry. The
location of the unrestrained pole is thus never fe-r removed from the location of the restrained
pole. Wills, modifying Meyerhof's theory, again restrained the pole to the boundary BD or to
that line extended (Fig 1.5.1.); here the angle of inclination of the boundary to the horizontal
decreases with sinkage. Hence the constraint is more severe and the final answer is nearer to
that achieved in the absence of any minimising procedure.

The effect of the minimising techniques on the value of the surface bearing capacity
factor Ny may be summarised, for 0 = 40F and 0 = 45 + 0/2, as follows;-

No minimising (corne r pole) 163
Line restraint 129
Unrestrained 119

At a penetration ratio of 2.5 the approximate values of the N7 factor for the pole restrained to
a line (Wills) and the unrestrained pole (Meyerhof) are 640 and 500 respectively. The trend
indicated by these figures is similar to that for the surface case.

It has been demonstrated that different pole locations can provide a large number of
solutions for the resultant forces generated on the contact face by the soil mass during failure.
This is plainly impossible. This absurdity results f:om using a method which does not relate
the frictional forces on the spiral boundary to both the soil properties and the dimensions of
the failure surface.

The apparently cunning method, whereby knowledge of the frictional force on the spiral
boundary is not required, is fallacious. The resultant force on the wedge boundary can be
calculated only if all the forces are known, are shown to be in equilibrium and are compatible
with the soil properties. Such knowledge can only be gained by a process of rigorous analysis
but owing to the complexity of the problem has not been fully achieved. A reasonable
alternative for immediate applications is to accept a plausible failure surface with some
rigorous foundation and eliminate the dangers inherent in the minimising procedures.
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5.2 The Effect of the Wedge Angle

The comparative effect of the wedge angle, ', on the surface bearing capacity is more
apparent when minimising techniques are eliminated. For the pole of the spiFal located at the
corner.of the footing, the factors Nc, Nq and My are given by the following equations:-

Nc = an 45 + cos (P- 0 ) 2(1 + sin 0) - 1-j.".. .. 5.2.1.

sin 0 cos '

Nq Cos, -) a4 tan (,/4 + 0/2) .... 2.
Cos 'P

N Cos(P0) 3 3.sin 0cos (0 -0) -cos 0sin^Y 2 cos 2 4,a 0  LCs 1 + 8 sin 20 ('0i
+ a~ 2 (os 0 sin E + 3 sin 0sin - + cos 0 cos E~ tan'

4 1 + 8 sin 20
..................................5.2.3.

where a 19:- e (v ' - 0) tan 0 and the range of values for the wedge angle is
0 . 'P <~ 7/4 + 0/2. In order to complete the comparison, the rupture distance, f, measured
horizontally fron the corner of the footing to the point at which the failure boundary joins the
soil surface, can be used in dimensionless form, f/B, to give the extent of failure':-

f/B =a 0 cos E/cos ' . 5.2..

The rupture distance and the 'bearing capacity factors are calculated for the two limiting
values of the wedge angle over the complete range of 0 (Figs 5.2-1a. and 5.2.1b.). The
variation in the same functions with respect ot 'P is also given for a constant value of 0
(Figs 5.2.1d. and 5.2.1e.). Although the rupture distances increase exponentially with respect
to ip, the curves for the NC and INfactors always exhibit a negative gradient. The cuive for
the Ny factor resembles a parabola reaching some minimum value with respect to 'P between
almost identical values of the Ny factor at 'P: 0 and 'P = w7/4 + 0/2. Thus, the value of
the bearing capacilty factor is not related to the extent of failure.

This is completely unrealistic and is determined by the mathematical constraints
imposed on the free body of mobilised soil rather than to the mechanism of failure. Any system
of fcrces can be resolved into the resultant hori7ontal and vertical forces acting at any point
in, the plane plus a couple. However, the force required to balance the couple depends on the
len~rh of the moment arm which in turn depends on the line of action of the resultant force
relative to the corner of the footing. The resultant frictional forces act vertically when the
wedge angle assumes the minimum'value of 0, whereas they require resolution to obtain the
Vertical component of the frictional force for any value of the wedge angle which is greater
than tho minimupi. In addition, the mnioent arm for the small wedge is less than that for the
large wiedge. These combined characteristics more than counteract for the greater extent of the
failure zone in the determination for the' larger values of Nc and Nq. The parabolic form of the
equation for N Y is probably 'du e to the cubic exponential function of the term aO, resulting
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froin the miofw irt pro luct (if ;irt-i ind ,san( v. It i '' iciil!1 th h .i:, offst
the influeonce of tile wedgih aqle onl the- le 1, o the uimrnint arm an.] on) IIIe d rhtion of thle
resultant forces.

In view of thL C facts, he aopt ionl of thfe c:orrect ailwes for twhe ase angie of the
wedgeo fotns an essrnt ial part. of twhc lei ing capuIciLV calculation 1rnd inust be do Lerinined from
the oounda rv s tress cond ltions. ( Vseque nI iN t HIC Of tem n -mM h be-ar n capacity, by

lon fli in wthrepetto the N(-df~p angle"- ' is of doirhttul va-lditv. It is also interesting to
note- that Iersagh i adiop-S, a wedize a n1-let w h~ i. contravxenes the stress boundarv conditions -

to iel a ighvale fr te N an Nqfactors and yet went to tremendous lengthsofmnms
ing the NVfactor.
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6. CONCLUSIONS

6.1 A general theory of penetration failure has been developed for strip footino.:3 or founda-
tions both lying on the surface and buried up to depths of not greater than ten times their
width. This is an improvement on previous theories in the following ways:-

(a) The stress field has fewer inconsistencies.

(b) Only ore set of simple assumptions are consistently employed to describe the
distribution of stresses along a failure boundary.

(c) New, and quite different conclusions are made on the effect of roughness of
the base. It is shown that rough and smooth foundations must have exactly the same
penetration resistance under ideal conditions....

(d) The thery treats all the weight of the soil within the figure of rupture as a
complete entity and not partly as a surcharge.

(e) The theory goes some way towards a more realistic combination of cohesion and
weight, utilisiig one figure of rupture.

(f) The dimersionless factors are functions not only of 0 and the c/YB and
penetration ratios, but also of the shaft parameters

(g) The con.puted results may be applied more easily to practical problems

6.2 The theory still Ins certain differences':-

(a) Consideration of the effects of dilation had to be sacrificed for the sake of
simplicity and geierality over a wide range of parameters.

(b) Computations of the dimensionless factors proved impossible at the higher
penetration ratios with low values of 0 because of the excessive tendency for the
failure boundary to close into the shaft without achieving equilibrium.

6.3. The experimental penetration resistance data support the quantitative theoretical
values.

6.4 The measured failure patterns are shown to be in agreement with the predicted
shapes only when the effect changing soil properties and constraints are carefully evaluated
throughout the duration of the test.
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7. 1IL;UONINfATIONS

The newN theory of penetration failure. is given in a form whichi is amenable to further
extens ion in the d-velopnicni of a theory of s hp-s-i nkag.
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APPENDIX A - THEORETICAL ANALYSIS

The complete the, retical analysis for the determination of bearing capacity is described.
The failure geometry is deri% ed by considering the equilibrium of the plane shear zone and the
boundary conditions, The magnitude and directions of all the forces and the moment arms are de-
termined. By taking moments about the pole of the spiral, the bearing capacity is evaluated.

A.1. THE WEIGHT AND WEIGHT-FICTIONAL FORCLS
IN THE PLANE SHEAR ZONE

The plane shear zone, BDEG, is bounded by the foundation shaft, BG, the horizontal
soil surface, GE, and the two failure planes, BD and DE, along which the shear stresses are
fully mobilised (Fig. A. 1. 1. ). Using co-ordinate geometry, the weight of the zone, BDEG, is
given by the equation:

W, = 2, [P (z2  - z ) + P2 (z3 - z1 ) ...... A.1.1.

When the failure boundary breaks into the horizontal free surface, the following relationships
apply :

z, 0 A. 1.2a.

22 - z- ri sin A. 1.2b.

z = Z A. 1. 2c.

r, cos q + z sin (A -1 2d

Cos (,- ")

p2 = r Cos A. 1. 2e.

Substituting for the co-ordinates in equation A. 1. 1.

A
W" = A.1. 3.

where

A, = z: sin (:c- ) - 2zr1  cos c' - ri sin cos -A. 1.4.

The weight-frictional forces on the two failure planes are a function of the depth from the
nearest horizontal free surface:

Z2F,, Yk~ ( )Z ~ d ze

Integrating

N k( ' V.
= A.1. 5.

2 (n,1) B cos (- .)

* 5?



w here : (( .- 1) 2(o.1)

V, Z2 z A. 1.6.

Similarly:
Z , Z 2 Z ,

j = i (Y dz.

and after integration:

F~y N =yV A. 1. 7.
2 (n + 1) B2 s i n

-A

where:

V) = ,2 - z2 A. 1.8.

The weight-frictional side thrust is:

Y ky. za

F Z. d z.
Cos ZI

and after integration:

* k z2

F - A. 1.9.

2 cos 5

A.2. THE MOMENT ARMS FOR THE WEIGHT AND WEIGHT-FRICTIONAL
FORCES IN THE PLANE SHEAR ZONE

The moment arm for the force due to the weight of the soil in the plane shear zone may
be obtained by co-ordinate geometry:

d,= coB (r4-~ EP1 (z2 - z%) + Pipa (Z2 -Z I) + p22 (Za - z1)

and substituting for the co-ordinates from equation A. 1. 2.

d - A.2. 1.

where:

A2 = z' sin' (, - 3z'r 1 sin( - ) + 3 zri cos;

- cos :i sin ,." [cos "cos (cP - ,)+ cos :' .2 2
r A.2.2.
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The moment arms, d_ and d,, for the weight-frictional forces, F.,. and F.,, may be
found by integration:

Z,2 2.

z2 z., cosZ( ' z dz

-6 cosa,
Cos k2 z d z'

z, cos ( -',-) B

2(,-.l) V, Cos__
_za-2n V cos- - A. 2.3.

(2nn+3)V. j cos( -)

where V, is given by equation A. 1.6. and:

VS = z 2 (2 ') -z:(2 4  A. 2.4,

Similarly :

, = za 2 (n+l) Ve cos i A.2.5.
. (2 n+3) V8  sin

where Vr. is given by equation A. 1.8. and:

Ve = z -
(  ) 

- (2" .) A. 2.6.

Finally, the moment arm for the side thrust may be found by hydrostatics:

d-= zoos A.2.7.

3

A. 3. THE COHESIVE, COHESIVE-FRICTIONAL AND ADHESIVE FORCES
IN THE PLANE SHEAR ZONE

The cohesive forces are proportional to the relative lengths of the failure
boundaries:

C1 = c DE = c(z - rl sin ) A. 3. 1.

cos( - .;)

Ca = c D = cr, A.3.2.

The cohesive-frictional force, Fo,, is given by the equation:
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Z2

F,1  r ck ; ~ ,z dz,

Z' Cosc~

ck .c V

A. 3.3.
(n +1) B, cos( 7- )

where:

V - - z(' ) A. 3.4.

Similarly:
c k. VF c k C 2  A. 3.5.
(n+l) B' sin

where:

V2 : (*) z=+ ) A. 3.6.

The cohesive-frictional side force depends on the cohesive component of the coefficient
of earth pressure:

Ft. = c k.. z A. 3.7.
Cos

The adhesive force on the shaft is :

C. = c. z A. 3.8.

A. 4. THE MOMENT ARMS FOR THE COHESIVE AND COHESIVE-
FRICTIONAL FORCES IN THE PLANE SHEAR ZONE

The moment arm, d 7 , of the cohesive force, C, is:

d 7 : r, cos c A. 4..

The moment arms of the cohesive force, Ca, and of the adhesive force, C., are zero as
the lines of action pass through the corner of the footing.

The moment arms for the cohesive-frictional forces are found In a similar manner co
their weight-frictional counterparts:

: Iz - (n-l)V3  cos A4

(n+2) 1 V, Cs

where V, is given by equation A. 3.4. and
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V. z - z 1(z) A. 4.3.

Similarly, the moment arm for F z is :

Z- (n+l) V. cos A. 4.4.

(n2) V i sin

where V2 is given by equation A. 3. 6. and:

V4  - ZZ (
. 2) A.4.5.

The side thrust is assumed to be uniformly distributed and thus:

d:. = z cos A. 4.6.

A. 5. SPECIAL RELATIONSHIP FOR - 0

When C = 0, the failure plane, BD, is horizontal. Thus, z, = z3 and the forces
Fy. and F.2 are indeterminate. In this case, the forces are gwen by the following equations:

F Y k W r, z(2 1) A.5. 1.

F0 2 =c k ri(, A. 5.2.

Both forces are uniformly distributed. Hence:

d 4 = d 9  12 rI cos * A.5.3.

A. 6. THE EQUATIONS OF EQUILIBRIUM FOR THE
PLANE SHEAR ZONE

The general equations of equilibrium are presented in section 2. 3, By expanding and
rearranging the terms, equations 2. 3. 4. and 2. 3. 5. may be derived in a form which is more
amenable for solution. The equation for horizontal equilibrium is:

F cos - F sin(,-C) + F01 cos - Fo 2sln(:.-,)

=F coA + F_ cos .5 + Cz cos - C, sin (.p-)
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Multiply each term by B/ Y B. Thus:

k- V sin ' cos Ve sin( cos(w

+ 2k c S, B ( " ' ) ' V, sin " cos -Ve sin(-- )cos( -C)

= A, + S, A4 2 (n+l) B2' sin CCos (-)A. 6. 1.

where:

A 3 = k z' A.6.2.
Y

A4 =B[ricos + k, z- (z-r 1 sin ')tan( - ) 3 A.6.3.

S, =c/,B A. 6.4.

Equation A. 6. 1. may be written in the form:

kY R, + k cR - R3 = 0 A. 6.5.

where:

R, = VEsin! cos - - Vcsin (P- )cos(T- C A.6.6.

R, = 2 S, B( ') [Vsin cos V- 2sin(P-)cos(.,-C) A.6.7.

P, [A +S, A4 2(n-l) B" sin' cos (c- ) A.6.8.

When = 0, special forms of equations A.6.1., A.6.6., A.6.7. and A.6.8. are
required:

k. V.- 2 (n+l)rz(2 ' ) sin Pcos 4

+2 cS 2 B(,+ ) rV -(n+l)r, z' sin wcos ;P

= [A +S, AJ 2 (n+l) B, cos A.6.1a.

but when : = :

V, =z

Thus

R,= z(,,,,) [z-2(n+l) r, sin q cos cJ A. 6.6a.

R2 =2 S2 B + 1) z E z-(n+1)rsin ccos J A.6. 7a.

R, = A, + S, A. 2(n+1) B " cos P A.6. 8a.
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The equation for the vertical oqlilihriumn of the plane shear zone may be similarly re-
arranged:

F, cos(;- ) -F sin." + F.,cos (-:)-F,,. sin

W,+ F IVsin +F- sin Cc +os FCsin +C,

Multiply fach term by B/) B:

k ;Y, V6 cosmc-,-)- V5 s i n 2 .

+2 k c S, B (  
IV2cos( -)-V, sin' r

=A5 + S, A;+S 2 A- 2(n+!) B ' sin- cos (:* - ) A.6.9.

where:

k z' tan
A+ - A + A. 6.10.

2 cos(¥.- 22

A= B 11z (I+ k.,,tan )2 r, sin.' A. 6. 11.

A, = Bz A. 6.12.

S2 =c.! B A. 6.13.

Expressing equation A. 6.9. in the form:

k R 4 + k R5 - Rc 0 A.6.14.
"C

the equations for the constants are:

R 4 = V 6 cos' (c-) - V, sin C - A.6.15.

Rs= 2 SB ) V2 Cos 2 (.- ) -V, sin' A.6.16.

R =A +S, As + S2 A7, 2(n+1) B" sin cos(w- C) A. 6.17.

When = 0, a special form of equation A. 6. 9. is again required:

k~c r, z(+ ') cos I- + k) c  S B( ' ) r , z'cos"-

'[AE + S, Aj+ S2 A,>I BA. 6.9a.

For this special case, the equations for the constants are:
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r2 z(2*I) cos A A. 6.15a.

Rs= S, B(')ri z' cos zc A. 6.16a.

Rf= A- S, Ae+ S A, B2. A. 6.17a.

A. 7. THE SOLUTION FOR k,,, n AND C IN A FRICTIONAL
MATERIAL WITH WEIGHT

In a non-cohesive soil, the values of k ;, and n may be obtained in terms of C from the
equations of horizontal and vertical equilibrium. Selecting the relevant terms due to weight in
equations A. 6. I. and A. 6.9. respectively:

- 2 A, (n+1) B" sin . - A. 7.1.

V' sin ' cos - sin( cos( 7-

and:

= 2 A (n+I) B2 - sin cos(cc--) A.7.2.

V, cos 2 ( -- V, sin C

Combining equations A. 7. 1. and A. 7.2., and expanding the terms Vs and V6 according to
equations A. 1.6. and A. 1. 8. :

z,4  ') A, = zz((A+A,) A. 7.3.

where:

A= cos ( ) cos ( - )+ A5sin(ToC)i A. 7.4.

A= sin [A 3 " + Aecos" A. 7.5.

Thus:

n= log (A, . A,) - log A 1, - 1 A. 7. 6.

2(log z3 - log z2)

Similarly the expressions for k: and n may be determined from equations A. 6. la. and
A.6.9a. when C = 0:

2 A3 (n+l) B" cos P
k = A. 7. Ia.S V - 2 (n+l) rI z(" ' 1) sin zs Cos q

and:
2 A (+l) B2 " cos

k A. 7.2a.
2 (n+t) r, Z(2- ) cos 2

Thus: A,
n - - A. 7.6a.

2 rA,



The values of n and k:.,,, may be determined for any value of ' and the input parameters.
rhe value of - satisfying all three equations may be found by substitution in the equation of rota-
tional equilibrium (equation 2.3. 5. ).

A. 8. THE SOLUTION FOR k. , n AND - IN A FRICTIONAL-COHESIVE
MATERIAL WITHOUT WEIGHT

In a frictional-cohesive material without weight, the foundation shaft is assumed to be
unsupported. Using the same analytical method as in section A. 7., equations A. 6. 1. and A. 6.9.,
respectively, may be presented in the form :

k - [r, cos - (z - r, sin ') tan (. - :)(n+1) Br' sin' cos (.- )

V. sin ' cos r - V! sin( -)cos (c-) A. 8.1.

and

kz- 2 rsin J (n+1) B sinr cos (-C)

Vc cos2 (:.' 2) V, sin" A. 8.2.

Thus:

n= log 'z 2 sin +s r, cosC ( log [r, cos- (:-.)
- 1

log1 3 - log z; A. 8.3.

It may be shown that rotational equilibrium is achieved only when the two failure boundaries,
BD and DE, are of equal length which gives the relationship:

z = r, sin ' + r, cos( -

Using this equilibrium condition in equation A. 8. 1. and A. 8. 3. , k c = I and n - 0 for any
value of .

A. 9. THE SOLUTION FOR k, c, n AND I IN A FRICTIONAL-COHESIVE
MAIERIAL WITH WEIGHT

When both weight and cohesion are present, the coefficient kc. may be determined from
the quadratic equation A. 6. 9. in terms of n and

k c  R. ± (RE + 41, R,), A. 9.1.

2R 4

One root, derived by subtracting the discriminator, is valid when ' < 0 and the other root is
valid when 0.

The values of n and - may be found by substitution in the equations for the horizontal
and rotational equilibrium of the plane shear zone.
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A. 10. THE FORCES IN THE RADIAL SHEAR ZONE

The area of the spiral sector, BCD, is determined first:

- d-t

-- (r,'- re ) A. 10.
4 tan

Thus, the weight of the zone is:

W -A. 10.:

In order to calculate the inoment of cohesion about the pole of the spiral, consider a
small element of length I (Fig. A. 10. 1. ). Taking moments about B:

d M, c dl r cos

But:

dl = rd.,

Cos Q

. dM = c r ' di.

Integrating:

m c r' di
C

= c (r- r) A. 10.3.

2 tan .

For the special case when = 0, the spiral reduces to a circle:

- r0  A. 10. Ia.

= c r,,:  A. 10. 3a.

A. 11. THE MOMENT ARM FOR THE WEIGHT FORCE IN THE RADIAL
SHEAR ZONE

The determination of the moment arm, d2 , for the weight force, W, of the spiral sector,
BCD, is not possible directly. The moment of area for the spiral sector with respect to the pole
of the spiral is determined instead (Fig. A. 11. 1. ). In the limit, as um - 0, the area of the spiral
sector approximates to that of a triangle and the centroid is then approximately that of a triangle.
Taking one axis, r., along r, and the other axis, ' , normal to it and passing through the pole of
the spiral,- the cartesian co-ordinates of the centroid are (r. , C3 ) where:



r 2/3 r Cos ,1. d,

and r - 2/3 r cos i d a.

The moment of area, 5 C,, is given by. the equation:

N1, r 3 r sin , du

1/3 r' . e sin , d.

Integrating by parts, the final expression is in the form:

M. = v "r, 3 (u sin - cos j +roa A. 11.1.

where:

u = 3 tan A. 11.2.

v= 1 A. 11.3.

3 (l+u')

The moment of area, ma r, may be derived in a similar way

M = 13 r,: e COS 'i di

After integration:

M -- v [r,3 (sin j.v u cos )-urc' A. 11.4.

Transforming the -, axts at the pole of the spiral to x, y axes, the following rela-
tionships are derived (Fig. A. 11.2.):

x.cos y - (ro+Y Sin;) A. 11.5-

x, sin. = C0 --Ycos A.11.6.

The moments of area, :, xo, about the pole of the spiral can be written in the form

.1,xe= O x. ( cos2 ,sin "0 , )

= . c cos " (x, cos . ) - .,sin I (xesin;)

Substituting for x, cos - and x- sin : from equations A. 11.5. and A. 1.6., the following
expressiun for the moment of area is obtained:

Cx- M. sin' - M cos A. 11. 7.
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d,:x=0 = Mr sin - M cos i A.11.8

The moment arm, d 2 , is derived in this general form to be applicable to bearing capacity
analyses in which the pole of the spiral is not necessarily located at the corner of the footing.

A. 12. THE MOMENT ARMS FOR THE RESULTANT FORCES

It is assumed that the resultant weight-frictional component of pressure is distributed
hydrostatically. Considering an inclined plane surface of unit width immersed in a homogeneous
material, the centre ol pressure may be determined by hydrostatics (Fig. A. 12. 1).

L = k d

where K is the radius of gyration and is given by the equation:

k' z 1 + d

12

But, It can be shown that:

d Z, + Z2

2 sin

and

I "- Zz - Z'

Combiiing these relationships, the distance, L, of the centre of pressure from the surface along
an inclined plane is:

L = 2 (z + z 2 '
2 

+ zi z ) A. 12. 1.

3 (z, + z2) sin

The moment arm for the resultant weight-frictional force on the wedge boundary may be
found by substituting the values :

ZI = Z
Z, ""

Z := Z 4 " Btan

in equation A. 12. 1. This yields the equation:

d. = B(3z cos ,+B sin,) cos (o A. 12.2.

3(4z cos +Bsin .)cos

As the resultant cohesive-frictional force is assumed to act at the niidpoint of the wedge
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boundary, the moment is:

di= B cos ,; A. 12.3.

4 cos (45+Q/2)

A. 13. THE DETERMINATION OF THE RESULTANT BEARING
CAPACITY

The complete system of forces and moment arms is shown in Fig. A. 13. 1. By taking
moments about the pole of the spiral, the resultant forces, Fy and F., are determined for the
general case when a side thrust is applied to the wall of the excavation:

F = W, d, + Wd 2 - F, c6 +F'y. dr A. 13,1.

F, C1 d? Fo d6 + F, di0 + M, A.13.2.

The total force on the base of the footing due to the weight of the soil mass at failure is

obtained from the vertical component of the force, Fx, on both boundaries of the wedge, less the
weight of the soil wedge; the total force due to cohesion is obtained from the vertical components
of the forces F, and C3 acting on the wedge boundaries (Fig. A. 13.2.):

F lb/In = 2F cos (I-)- YB'tan , + 2F. cos (0 - ) 4 2 C3 sin4

4

This express,on for the base resistance may be written in the form of a two part additive equaton:

F lb/in 2 2 N, + cBN c  A.13.3.

where :

N 4 = F. cos(- ,) tan, A.13.4.
B.

"

N, = 2[Fo cos(: - T)+ C. sin i A. 13.5.

cB

The dimensionless bearing capacity factors, Ny and N, , are a function of (r, 6, c./'Y B, z/B,
kN, and k,..
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FIG.2.1.2. THE STRESS FIELD FOR A WEDGE-SHAPED
FOUNDATION AFTER MINTSKOVSKY,
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FIG 4.5.1 The shape of the wedge beneath a 2 in, wide -rnooth

footing buried in damp sand
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